Evolution of Neotropical Biodiversity: Phylogeny, Ecology, And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JVP 26(3) September 2006—ABSTRACTS
Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra. -
Tomistoma Tomistoma Schlegelii Mark R
Tomistoma Tomistoma schlegelii Mark R. Bezuijen1, Bruce M. Shwedick2, Ralf Sommerlad3, Colin Stevenson4 and Robert B. Steubing5 1 PO Box 183, Ferny Creek, Victoria 3786, Australia ([email protected]); 2 Crocodile Conservation Services, PO Box 3176, Plant City, FL 33563, USA ([email protected]); 3 Roedelheimer Landstr. 42, Frankfurt, Hessen 60487, Germany ([email protected]); 4 Crocodile Encounters, 37 Mansfi eld Drive, Merstham, Surrey, UK ([email protected]); 5 10 Locust Hill Road, Cincinnati, OH 45245, USA ([email protected]) Common Names: Tomistoma, sunda gharial, false gharial, 2009 IUCN Red List: EN (Endangered. Criteria: C1: buaya sumpit, buaya senjulung/Julung (Indonesia), takong Population estimate is less than 2500 mature individuals, (Thailand) with continuing decline of at least 25% within 5 years or two generations. Widespread, but in low numbers; IUCN 2009). It is likely that criteria A1(c): “a decline in the area Range: Indonesia (Kalimantan, Sumatra, Java), Malaysia of occupancy, extent of occurrence and/or decline in habitat” (Peninsular Malaysia, Sarawak), Brunei, Thailand also applies, as habitat loss is the key threat to the species. (extirpated?) (Last assessed in 2000). Principal threats: Habitat destruction Ecology and Natural History Tomistoma (Tomistoma schlegelii) is a freshwater, mound- nesting crocodilian with a distinctively long, narrow snout. It is one of the largest of crocodilians, with males attaining lengths of up to 5 m. The current distribution of Tomistoma extends over lowland regions of eastern Sumatra, Kalimantan and western Java (Indonesia) and Sarawak and Peninsular Malaysia (Malaysia), within 5 degrees north and south of the equator (Stuebing et al. 2006). Tomistoma apparently occurred in southern Thailand historically, but there have been no reports since at least the 1970s and it is probably extirpated there (Ratanakorn et al. -
Crocodylomorpha, Neosuchia), and a Discussion on the Genus Theriosuchus
bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 5 figures The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia), and a discussion on the genus Theriosuchus MARK T. YOUNG1,2, JONATHAN P. TENNANT3*, STEPHEN L. BRUSATTE1,4, THOMAS J. CHALLANDS1, NICHOLAS C. FRASER1,4, NEIL D. L. CLARK5 and DUGALD A. ROSS6 1School of GeoSciences, Grant Institute, The King’s Buildings, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3Department of Earth Science and Engineering, Imperial College London, London SW6 2AZ, UK 4National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK 5The Hunterian, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK 6Staffin Museum, 6 Ellishadder, Staffin, Isle of Skye IV51 9JE, UK Received 1 December 2014; revised 23 June 2015; accepted for publication 24 June 2015 Atoposaurids were a clade of semiaquatic crocodyliforms known from the Late Jurassic to the latest Cretaceous. Tentative remains from Europe, Morocco, and Madagascar may extend their range into the Middle Jurassic. Here we report the first unambiguous Middle Jurassic (late Bajocian–Bathonian) atoposaurid: an anterior dentary from the Isle of Skye, Scotland, UK. A comprehensive review of atoposaurid specimens demonstrates that this dentary can be referred to Theriosuchus based on several derived characters, and differs from the five previously recog- nized species within this genus. Despite several diagnostic features, we conservatively refer it to Theriosuchus sp., pending the discovery of more complete material. As the oldest known definitively diagnostic atoposaurid, this discovery indicates that the oldest members of this group were small-bodied, had heterodont dentition, and were most likely widespread components of European faunas. -
8. Archosaur Phylogeny and the Relationships of the Crocodylia
8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988. -
Revised Stratigraphy of Neogene Strata in the Cocinetas Basin, La Guajira, Colombia
Swiss J Palaeontol (2015) 134:5–43 DOI 10.1007/s13358-015-0071-4 Revised stratigraphy of Neogene strata in the Cocinetas Basin, La Guajira, Colombia F. Moreno • A. J. W. Hendy • L. Quiroz • N. Hoyos • D. S. Jones • V. Zapata • S. Zapata • G. A. Ballen • E. Cadena • A. L. Ca´rdenas • J. D. Carrillo-Bricen˜o • J. D. Carrillo • D. Delgado-Sierra • J. Escobar • J. I. Martı´nez • C. Martı´nez • C. Montes • J. Moreno • N. Pe´rez • R. Sa´nchez • C. Sua´rez • M. C. Vallejo-Pareja • C. Jaramillo Received: 25 September 2014 / Accepted: 2 February 2015 / Published online: 4 April 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Cocinetas Basin of Colombia provides a made exhaustive paleontological collections, and per- valuable window into the geological and paleontological formed 87Sr/86Sr geochronology to document the transition history of northern South America during the Neogene. from the fully marine environment of the Jimol Formation Two major findings provide new insights into the Neogene (ca. 17.9–16.7 Ma) to the fluvio-deltaic environment of the history of this Cocinetas Basin: (1) a formal re-description Castilletes (ca. 16.7–14.2 Ma) and Ware (ca. 3.5–2.8 Ma) of the Jimol and Castilletes formations, including a revised formations. We also describe evidence for short-term pe- contact; and (2) the description of a new lithostratigraphic riodic changes in depositional environments in the Jimol unit, the Ware Formation (Late Pliocene). We conducted and Castilletes formations. The marine invertebrate fauna extensive fieldwork to develop a basin-scale stratigraphy, of the Jimol and Castilletes formations are among the richest yet recorded from Colombia during the Neogene. -
Thomas Jefferson Meg Tooth
The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 30 Number 3 September 2015 Thomas Jefferson Meg Tooth Features Thomas Jefferson Meg The catalogue number Review; Walking is: ANSP 959 Whales Inside The tooth came from Ricehope Estate, Snaggletooth Shark Cooper River, Exhibit South Carolina. Tiktaalik Clavatulidae In 1806, it was Juvenile Bald Eagle originally collected or Sculpting Whale Shark owned by Dr. William Moroccan Fossils Reid. Prints in the Sahara Volunteer Outing to Miocene-Pliocene National Geographic coastal plain sediments. Dolphins in the Chesapeake Sloth Tooth Found SharkFest Shark Iconography in Pre-Columbian Panama Hippo Skulls CT- Scanned Squalus sp. Teeth Sperm Whale Teeth On a recent trip to the Academy of Natural Sciences of Drexel University (Philadelphia), Collections Manager Ned Gilmore gave John Nance and me a behind -the-scenes highlights tour. Among the fossils that belonged to Thomas☼ Jefferson (left; American Founding Father, principal author of the Declaration of Independence, and third President of the United States) was this Carcharocles megalodon tooth. Jefferson’s interests and knowledge were encyclopedic; a delight to know that they included paleontology. Hand by J. Nance. Photo by S. Godfrey. Jefferson portrait from: http://www.biography.com/people/thomas-jefferson-9353715 ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora September 2015 Book Review: The Walking 41 million years ago and has worldwide distribution. It was fully aquatic, although it did have residual Whales hind limbs. In later chapters, Professor Thewissen George F. Klein discusses limb development and various genetic factors that make whales, whales. This is a The full title of this book is The Walking complicated topic, but I found these chapters very Whales — From Land to Water in Eight Million clear and readable. -
First Remains of Diplocynodon Cf. Ratelii from the Early Miocene Sites of Ahníkov (Most Basin, Czech Republic)
First remains of Diplocynodon cf. ratelii from the early Miocene sites of Ahníkov (Most Basin, Czech Republic) Milan Chroust, Martin MazuCh, Martin ivanov, Boris Ekrt & ÀngEl h. luján Fossil crocodylians from the early Miocene (Eggenburgian, MN3a) sites of Ahníkov (Most Basin, Czech Republic) are described in this paper. The new material presented here includes over 200 remains (bones, teeth and osteoderms), and therefore constitutes the largest crocodylian sample known from the fossil record of the Czech Republic. Assignment of the specimens to the fossil alligatoroid taxon Diplocynodon cf. ratelii Pomel, 1847 (family Diplocynodontidae) is justified by the presence of several cranial and postcranial features. In the Czech Republic, this species has been previously reported only from the Tušimice site (MN3, Most Basin, Ohře/Eger Graben). The majority of the material reported from Ahníkov is composed of disarticulated juvenile individuals. Both sites are most likely attributable to the specific environment of swampy areas, where crocodile hatchlings would hide from predators. The presence of the genus Diplocynodon supports the assumption of rather warm climatic conditions in Central Europe during the early to middle Miocene, as well as a swampy depositional environment previously inferred for Ahníkov. However, some squamate taxa suggest the existence of additional, surrounding palaeoenvironment characterised by a more open landscape with slightly drier conditions. • Key words: fossil crocodiles, alligatoroid, Ahníkov, Ohře/Eger Graben, Eggenburgian. CHROUST, M., MAZUCH, M., IVANOV, M., EKRT, B. & LUJÁN, À.H. 2021. First remains of Diplocynodon cf. ratelii from the early Miocene sites of Ahníkov (Most Basin, Czech Republic). Bulletin of Geosciences 96(2), 123–138 (10 figures, 1 table). -
Table of Contents 4.0 Description of the Physical
TABLE OF CONTENTS 4.0 DESCRIPTION OF THE PHYSICAL ENVIRONMENT............................................ 41 4.1 Geology ................................................................................................. 41 4.1.1 Methodology ........................................................................................ 41 4.1.2 Regional Geological Formations........................................................... 42 4.1.3 Local Geological Units ......................................................................... 47 4.1.3.1 Atlantic Coast .......................................................................... 47 4.1.3.2 Gatun Locks.............................................................................. 48 4.1.3.3 Gatun Lake ............................................................................... 49 4.1.3.4 Culebra Cut ......................................................................... ...410 4.1.3.5 Pacific Locks ...........................................................................411 4.1.3.6 Pacific Coast............................................................................412 4.1.4 Paleontological Resources ...................................................................413 4.1.5 Geotechnical Characterization .............................................................417 4.1.6 Tectonics.............................................................................................421 4.2 Geomorphology ..............................................................................................422 -
Crocodiles Alter Skin Color in Response to Environmental Color Conditions
www.nature.com/scientificreports OPEN Crocodiles Alter Skin Color in Response to Environmental Color Conditions Received: 3 January 2018 Mark Merchant1, Amber Hale2, Jen Brueggen3, Curt Harbsmeier4 & Colette Adams5 Accepted: 6 April 2018 Many species alter skin color to varying degrees and by diferent mechanisms. Here, we show that Published: xx xx xxxx some crocodylians modify skin coloration in response to changing light and environmental conditions. Within the Family, Crocodylidae, all members of the genus Crocodylus lightened substantially when transitioned from dark enclosure to white enclosures, whereas Mecistops and Osteolaemus showed little/no change. The two members of the Family Gavialidae showed an opposite response, lightening under darker conditions, while all member of the Family Alligatoridae showed no changes. Observed color changes were rapid and reversible, occurring within 60–90 minutes. The response is visually- mediated and modulated by serum α-melanocyte-stimulating hormone (α-MSH), resulting in redistribution of melanosomes within melanophores. Injection of crocodiles with α-MSH caused the skin to lighten. These results represent a novel description of color change in crocodylians, and have important phylogenetic implications. The data support the inclusion of the Malayan gharial in the Family Gavialidae, and the shift of the African slender-snouted crocodile from the genus Crocodylus to the monophyletic genus Mecistops. Te rapid alteration of skin color is well known among a wide assortment of ectothermic vertebrates and inver- tebrates1. Adaptive skin color changes may occur for a variety of reasons, including communication, thermal regulation, and crypsis1. Te modifcation of skin pigmentation is achieved by either physiological or morpho- logical mechanisms1. -
The First Crocodyliforms Remains from La Parrita Locality, Cerro Del Pueblo
Boletín de la Sociedad Geológica Mexicana / 2019 / 727 The first crocodyliforms remains from La Parrita locality, Cerro del Pueblo Formation (Campanian), Coahuila, Mexico Héctor E. Rivera-Sylva, Gerardo Carbot-Chanona, Rafael Vivas-González, Lizbeth Nava-Rodríguez, Fernando Cabral-Valdéz ABSTRACT Héctor E. Rivera-Sylva ABSTRACT RESUMEN Fernando Cabral-Valdéz Departamento de Paleontología, Museo del Desierto, Carlos Abedrop Dávila 3745, 25022, The record of land tetrapods of El registro de tetrápodos terrestres en la Saltillo, Coahuila, Mexico. the Cerro del Pueblo Formation Formación Cerro del Pueblo (Cretácico (Late Cretaceous, Campanian), in Gerardo Carbot-Chanona tardío, Campaniano) en Coahuila, incluye Coahuila, includes turtles, pterosaurs, [email protected] tortugas, pterosaurios, dinosaurios y Museo de Paleontología “Eliseo Palacios Aguil- dinosaurs, and crocodyliforms. This era”, Secretaría de Medio Ambiente e Historia last group is represented only by crocodyliformes. Este último grupo está Natural. Calzada de los hombres ilustres s/n, representado por goniofólididos, eusuquios 29000, Tuxtla Gutiérrez, Chiapas, Mexico. goniopholidids, indeterminate eusu- chians, and Brachychampsa montana. In indeterminados y Brachychampsa montana. Rafael Vivas-González this work we report the first crocodyli- En este trabajo se reportan los primeros Villa Nápoles 6506, Colonia Mirador de las Mitras, 64348, Monterrey, N. L., Mexico. form remains from La Parrita locality, restos de crocodyliformes de la localidad Cerro del Pueblo Formation, based La Parrita, Formación Cerro del Pueblo, Lizbeth Nava-Rodríguez on one isolated tooth, vertebrae, and con base en un diente aislado, vértebras y Facultad de Ingeniería, Universidad Autóno- osteoderms. The association of croc- ma de San Luis Potosí, Dr. Manuel Nava 8, osteodermos. La asociación de crocodyli- Zona Universitaria Poniente, San Luis Potosi, odyliforms, turtles, dinosaurs, and formes, tortugas, dinosaurios y oogonias S.L.P., Mexico. -
Phylogenetic Taphonomy: a Statistical and Phylogenetic
Drumheller and Brochu | 1 1 PHYLOGENETIC TAPHONOMY: A STATISTICAL AND PHYLOGENETIC 2 APPROACH FOR EXPLORING TAPHONOMIC PATTERNS IN THE FOSSIL 3 RECORD USING CROCODYLIANS 4 STEPHANIE K. DRUMHELLER1, CHRISTOPHER A. BROCHU2 5 1. Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, 6 Tennessee, 37996, U.S.A. 7 2. Department of Earth and Environmental Sciences, The University of Iowa, Iowa City, Iowa, 8 52242, U.S.A. 9 email: [email protected] 10 RRH: CROCODYLIAN BITE MARKS IN PHYLOGENETIC CONTEXT 11 LRH: DRUMHELLER AND BROCHU Drumheller and Brochu | 2 12 ABSTRACT 13 Actualistic observations form the basis of many taphonomic studies in paleontology. 14However, surveys limited by environment or taxon may not be applicable far beyond the bounds 15of the initial observations. Even when multiple studies exploring the potential variety within a 16taphonomic process exist, quantitative methods for comparing these datasets in order to identify 17larger scale patterns have been understudied. This research uses modern bite marks collected 18from 21 of the 23 generally recognized species of extant Crocodylia to explore statistical and 19phylogenetic methods of synthesizing taphonomic datasets. Bite marks were identified, and 20specimens were then coded for presence or absence of different mark morphotypes. Attempts to 21find statistical correlation between trace types, marking animal vital statistics, and sample 22collection protocol were unsuccessful. Mapping bite mark character states on a eusuchian 23phylogeny successfully predicted the presence of known diagnostic, bisected marks in extinct 24taxa. Predictions for clades that may have created multiple subscores, striated marks, and 25extensive crushing were also generated. Inclusion of fossil bite marks which have been positively 26associated with extinct species allow this method to be projected beyond the crown group. -
Christopher A. Brochu
Curriculum Vitae CHRISTOPHER A. BROCHU Department of Geoscience Phone: 319-353-1808 University of Iowa Fax: 319-335-1821 Iowa City, IA 52242 Email: [email protected] EDUCATIONAL AND PROFESSIONAL HISTORY Higher Education 1993-1997 Ph.D. Geological Sciences University of Texas at Austin 1989-1993 M.A. Geological Sciences University of Texas at Austin 1985-1989 B.S. Geology University of Iowa Professional and Academic Positions 2010 - present Miller Teaching Fellow, University College, University of Iowa 2006 - present Associate Professor, Department of Geoscience, University of Iowa 2001 - 2006 Assistant Professor, Department of Geoscience, University of Iowa 2001 - present Research Associate, Vertebrate Paleontology Laboratory, Texas Memorial Museum 2001 - present Research Associate, Department of Geology, Field Museum 2001 - present Research Associate, Science Museum of Minnesota 1998 - 2000 Postdoctoral Research Scientist, Department of Geology, Field Museum Honors and Awards 2011 Fellowship, Obermann Center for Advanced Studies, University of Iowa 2011 Career Development Award, College of Liberal Arts and Sciences, University of Iowa 2006 Dean’s Scholar, College of Liberal Arts and Sciences, University of Iowa 2005 Collegiate Teaching Award, College of Liberal Arts and Sciences, University of Iowa 1996 Romer Prize, Society of Vertebrate Paleontology 1996 Stoye Award in General Herpetology, American Society of Ichthyologists and Herpetologists 1996 Best Student Technical Sessions Speaker, Geological Sciences, University of Texas