Restos De Cf. Crocodylus Sp. En El Mioceno Tardío De Chiapas, México: Importancia Paleobiogeográfica Y Paleoambiental Late Miocene Cf

Total Page:16

File Type:pdf, Size:1020Kb

Restos De Cf. Crocodylus Sp. En El Mioceno Tardío De Chiapas, México: Importancia Paleobiogeográfica Y Paleoambiental Late Miocene Cf Restos de cf. Crocodylus sp. en el Mioceno tardío de Chiapas, México: importancia paleobiogeográfica y paleoambiental Late Miocene cf. Crocodylus sp. remains from Chiapas, Mexico: paleobiogeographic and paleoenvironmental relevance Gerardo Carbot-Chanona Museo de Paleontología “Eliseo Palacios Aguilera”, Dirección de Paleontología, Secretaría de Medio Ambiente e Historia Natural. Calzada de Los Hombres Ilustres s/n, Parque Madero, 29000. Tuxtla Gutiérrez, Chiapas, México. Teléfono (+52) 961600254 ext. 121 Correo electrónico: [email protected] RESUMEN ABSTRACT Los restos fósiles asignados a cf. Crocodylus sp. fueron reco- Crocodile remains assigned to cf. Crocodylus sp. were recollec- lectados en la localidad Puente Ixcán, municipio de Maravilla ted in the Puente Ixcán locality, Maravilla Tenejapa municipa- Tenejapa, Chiapas, sureste de México. El material rescatado lity, Chiapas State, southern Mexico. The recovered material comprende vértebras y dientes aislados. En la misma localidad includes dorsal vertebras and isolated teeth. In the same lo- han sido recuperados restos del rinoceronte Teleoceras cf. T. hick- cality, the rhino Teleoceras cf. T. hicksi, Gomphotherium sp., si, Gomphotherium sp., fragmentos de tortugas, un Caimaninae fragments of turtles, an indeterminate Caiman, and an inde- indeterminado y un Equidae indeterminado. La presencia de Te- terminate Equidae have been recovered. The presence of Te- leoceras cf. T. hicksi indica que la asociación faunística pertenece leoceras cf. T. hicksi indicates that the faunistic association al Mioceno tardío. El reporte de Crocodylus en el Mioceno tardío belongs to the late Miocene. The ocurrence of Crocodylus in de Chiapas apoya la hipótesis de dispersión transatlántica del the late Miocene of Chiapas give support to the trans-Atlantic género, desde África hacia el Nuevo Mundo. De igual manera, se dispersion hypothesis of the genus from Africa to New World. amplía el rango de distribución de Crocodylus en México durante Likewise, the distribution range of Crocodylus in Mexico in the el Mioceno tardío, extendiéndose desde la parte centro-oeste del late Miocene is broadens, extending it from the west and cen- país hasta el sur. Se infiere la existencia de un gran afluente de tral to the south of the country. The existence of a big affluent agua en la zona de estudio, donde predominaba un ambiente tro- of water is inferred for the area, where a tropical environment pical, debido a que es el típico hábitat de Crocodylus. prevailed, because it is the typical habitat of Crocodylus. Palabras clave: cocodrilo, inferencia ambiental, dispersión Key words: crocodile, environmental inference, transoceanic transoceánica dispersion INTRODUCCIÓN y C. suchus (cocodrilo del oeste de África) (Gri- Crocodylus es el género dentro del grupo- gg & Kirshner, 2015). Crocodylus raninus era corona Crocodylia con más especies, ya que una especie válida hasta finales del siglo XX comprende casi la mitad de la diversidad de (Ross, 1990; Ross, 1992), sin embargo, estudios cocodrilos vivientes, además de ser el más eco- moleculares recientes demuestran que es la lógicamente diverso (Oaks, 2011). Crocodylus misma especie que C. novaeguineae (Gratten, junto con Osteolaemus y Mecistops conforman 2003). Por su parte, la especie C. cataphractus, la familia Crocodylidae (Brochu, 2009). está contenida ahora en el género monoespecí- El género Crocodylus posee la distribución ficoMecistops (McAliley et al., 2006). actual más amplia y se encuentra en las zo- Estudios moleculares indican un bajo nivel nas tropicales de América, África, sur y este de divergencia entre las especies modernas de de Asia, Papúa, Nueva Guinea y Australia Crocodylus, lo que sugiere que el género radió (Martin, 2008; Grigg & Kirshner, 2015). Doce recientemente (White y Densmore, 2001). Oaks especies son reconocidas actualmente para el (2011) basándose en secuencias de ADN del género: Crocodylus acutus (cocodrilo america- genoma mitocondrial y nuclear, estimó que la no), C. intermedius (cocodrilo del Orinoco), C. antigüedad del ancestro común de Crocodylus moreletii (cocodrilo de pantano), C. rhombifer data de entre 13.6 a 8.3 millones de años. (cocodrilo cubano), C. palustris (mugger), C. Los fósiles más antiguos determinados in- siamensis (cocodrilo siamés), C. mindorensis equívocamente como Crocodylus se han en- (cocodrilo filipino), C. novaeguineae (cocodrilo contrado en el Mioceno tardío. Pocas especies de Nueva Guinea), C. johnstoni (cocodrilo de válidas han sido descritas para esa época, en- agua dulce australiano), C. porosus (cocodrilo tre las que se cuentan Crocodylus checchiai del de agua salada), C. niloticus (cocodrilo del Nilo) Mioceno superior-Plioceno inferior de la zona 24 Quehacer Científico en Chiapas 12 (2) 2017 fosilífera de Sahabi, Libia (Delfino, Böhme, MATERIALES Y MÉTODOS & Rook, 2007), y posiblemente en el Mioceno superior de Valencia, España (Montoya et al., Material estudiado 2006); y Crocodylus palaeindicus del Mioceno El material reportado en este trabajo compren- superior-Plioceno de Siwalik, India (Falconer, de cinco elementos aislados: IHNFG-4758, oc- 1859). Otras especies del mismo rango tempo- tava o novena vértebra dorsal; IHNFG-5222, ral, antes incluidas en Crocodylus, están ahora segunda vértebra dorsal; IHNFG-5223, ter- contenidas en otros géneros (e.g. “Crocodylus” cera o cuarta vértebra dorsal, IHNFG-5224, pigotti ahora Brochuchus pigotti [Conrad et diente pre-maxilar o dentario; IHNFG-5225, al., 2013]), relegadas a nomen dubium (e.g. tercer o cuarto diente maxilar. El material Crocodylus bambolii) o en sinonimia con otras está depositado en la colección paleontológica especies (Brochu, 2000; Delfino et al., 2007; que alberga el Museo de Paleontología “Eliseo Delfino y Rook, 2008). Palacios Aguilera” de la Secretaría de Medio En América los registros más antiguos de Ambiente e Historia Natural. El acrónimo de Crocodylus provienen de la Cuenca de Tecolot- la colección paleontológica es IHNFG (Institu- lán, en el estado de Jalisco (Carranza-Caste- to de Historia Natural, Fósil Geográfico). ñada, 2006) y de Ranchería Zietla, en Hidalgo (Castillo, Cabral, & Carranza, 1996), ambas Procedencia de las muestras localidades de edad Mioceno tardío-Plioceno Los restos fósiles de cocodrilos proceden de la temprano. Registros adicionales incluyen Cro- localidad fosilífera Puente Ixcán, municipio de codylus cf. C. moreletti del Plioceno de Baja Maravilla Tenejapa, Chiapas (Figura 1). En la California (Miller, 1980); C. acutus del Plio- localidad afloran sedimentos detríticos pobre- ceno-Pleistoceno de El Salvador (Cisneros, mente consolidados y dispuestos en posición 2005); Crocodylus sp. del Plioceno-Pleistoceno horizontal, que en total tienen 8 m de espesor. de Costa Rica (Mead et al., 2006b); C. morele- La litología está compuesta principalmente de tii del Pleistoceno de Guatemala (Mook, 1959); arena de grano medio de color gris oscuro a cf. Crocodylus acutus del Pleistoceno tardío gris claro, en la que se entremezclan lentes de de Térapa, Sonora (Mead et al., 2006a); Cro- arena gruesa y grava. Además del material de codylus sp. del Pleistoceno tardío de Atoyac, cocodrilos, se han rescatado restos de tortugas Veracruz (Peña-Serrano & Carbot-Chanona, trioníquidas y dermatémidas, un Caimaninae 2010), y C. rhombifer del Pleistoceno-Holoceno identerminado, un Equidae indeterminado, el mastodonte Gomphotherium sp. y el rinoce- de Cuba, Las Bahamas e Islas Caimán (Varo- ronte Teleoceras cf. T. hicksi (Carbot-Chanona, na, 1984; Morgan & Albury, 2013). 2011; Brochu & Carbot-Chanona, 2015; Gómez- Los registros de Crocodylus en América Pérez & Carbot-Chanona, 2016). La presencia son realmente escasos, principalmente los que de Teleoceras cf. T. hicksi indica una edad del datan de final del Mioceno. Por tal motivo, Mioceno tardío para la asociación faunística reportar nuevos ejemplares es de suma im- (Prothero, 2005). portancia para entender mejor la paleodistri- bución del género, ya que las hipótesis sobre Recolecta, limpieza y uso de material la llegada y establecimiento en América son de comparación aún controversiales. En consecuencia, el obje- Todo el material fue recolectado superficial- tivo del presente trabajo es describir y repor- mente de manera manual. Posteriormente fue tar de manera formal el material de cocodrilos rotulado y empaquetado para su traslado al proveniente de una localidad de edad Mioceno laboratorio del Museo de Paleontología “Eli- tardío que se ubica en el este de Chiapas, así seo Palacios Aguilera”. Debido a que los res- como discutir su relevancia paleobiogeográfi- tos tenían sedimento adherido fue necesario ca e inferir el paleoambiente de la localidad limpiarlos de manera mecánica usando un donde fue hallado el material. airscribe y agujas odontológicas. Las partes Quehacer Científico en Chiapas 12 (2) 2017 25 Figura 1. Ubicación de la localidad con restos de cf. Crocodylus sp. del Mioceno tardío de Chiapas, México. fragmentadas se unieron usando un pegamen- Para las vértebras, las medidas se obtuvieron to comercial a base de cianocrilato. siguiendo a Buscalioni, Sanz, Casanovas, y San- La identificación se realizó mediante com- tafe (1986), como se muestra en la Figura 2. Las paración directa con cráneos y esqueletos de medidas de los dientes se tomaron de la siguien- Crocodylus acutus (tres ejemplares), C. more- te forma: largo total, tomado longitudinalmente letii (un ejemplar) y Caiman crocodilus (dos desde la base hasta el ápice; diámetro máximo ejemplares), pertenecientes
Recommended publications
  • Tomistoma Tomistoma Schlegelii Mark R
    Tomistoma Tomistoma schlegelii Mark R. Bezuijen1, Bruce M. Shwedick2, Ralf Sommerlad3, Colin Stevenson4 and Robert B. Steubing5 1 PO Box 183, Ferny Creek, Victoria 3786, Australia ([email protected]); 2 Crocodile Conservation Services, PO Box 3176, Plant City, FL 33563, USA ([email protected]); 3 Roedelheimer Landstr. 42, Frankfurt, Hessen 60487, Germany ([email protected]); 4 Crocodile Encounters, 37 Mansfi eld Drive, Merstham, Surrey, UK ([email protected]); 5 10 Locust Hill Road, Cincinnati, OH 45245, USA ([email protected]) Common Names: Tomistoma, sunda gharial, false gharial, 2009 IUCN Red List: EN (Endangered. Criteria: C1: buaya sumpit, buaya senjulung/Julung (Indonesia), takong Population estimate is less than 2500 mature individuals, (Thailand) with continuing decline of at least 25% within 5 years or two generations. Widespread, but in low numbers; IUCN 2009). It is likely that criteria A1(c): “a decline in the area Range: Indonesia (Kalimantan, Sumatra, Java), Malaysia of occupancy, extent of occurrence and/or decline in habitat” (Peninsular Malaysia, Sarawak), Brunei, Thailand also applies, as habitat loss is the key threat to the species. (extirpated?) (Last assessed in 2000). Principal threats: Habitat destruction Ecology and Natural History Tomistoma (Tomistoma schlegelii) is a freshwater, mound- nesting crocodilian with a distinctively long, narrow snout. It is one of the largest of crocodilians, with males attaining lengths of up to 5 m. The current distribution of Tomistoma extends over lowland regions of eastern Sumatra, Kalimantan and western Java (Indonesia) and Sarawak and Peninsular Malaysia (Malaysia), within 5 degrees north and south of the equator (Stuebing et al. 2006). Tomistoma apparently occurred in southern Thailand historically, but there have been no reports since at least the 1970s and it is probably extirpated there (Ratanakorn et al.
    [Show full text]
  • Crocodiles Alter Skin Color in Response to Environmental Color Conditions
    www.nature.com/scientificreports OPEN Crocodiles Alter Skin Color in Response to Environmental Color Conditions Received: 3 January 2018 Mark Merchant1, Amber Hale2, Jen Brueggen3, Curt Harbsmeier4 & Colette Adams5 Accepted: 6 April 2018 Many species alter skin color to varying degrees and by diferent mechanisms. Here, we show that Published: xx xx xxxx some crocodylians modify skin coloration in response to changing light and environmental conditions. Within the Family, Crocodylidae, all members of the genus Crocodylus lightened substantially when transitioned from dark enclosure to white enclosures, whereas Mecistops and Osteolaemus showed little/no change. The two members of the Family Gavialidae showed an opposite response, lightening under darker conditions, while all member of the Family Alligatoridae showed no changes. Observed color changes were rapid and reversible, occurring within 60–90 minutes. The response is visually- mediated and modulated by serum α-melanocyte-stimulating hormone (α-MSH), resulting in redistribution of melanosomes within melanophores. Injection of crocodiles with α-MSH caused the skin to lighten. These results represent a novel description of color change in crocodylians, and have important phylogenetic implications. The data support the inclusion of the Malayan gharial in the Family Gavialidae, and the shift of the African slender-snouted crocodile from the genus Crocodylus to the monophyletic genus Mecistops. Te rapid alteration of skin color is well known among a wide assortment of ectothermic vertebrates and inver- tebrates1. Adaptive skin color changes may occur for a variety of reasons, including communication, thermal regulation, and crypsis1. Te modifcation of skin pigmentation is achieved by either physiological or morpho- logical mechanisms1.
    [Show full text]
  • Does Reintroduction Stabilize the Population of the Critically Endangered Gharial (Gavialis Gangeticus, Gavialidae) in Chitwan National Park, Nepal?
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 20: 756–761 (2010) Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/aqc.1151 Does reintroduction stabilize the population of the critically endangered gharial (Gavialis gangeticus, Gavialidae) in Chitwan National Park, Nepal? JEAN-MARIE BALLOUARDa,b,Ã, PAULINE PRIOLc, JEAN OISONa, ALEXANDRE CILIBERTIa and ANTOINE CADIa aAWELY, des animaux et des hommes, 3 rue de la Croix blanche, 89260 Thorigny/Oreuse, France bCEBC-CNRS, 79360 Villiers en bois, France cCISTUDE NATURE, Chemin du moulinat, 33185 le Haillan, France ABSTRACT 1. Despite conservation programmes (India 1975, Nepal 1978) gharial populations (Gavialis gangeticus) have declined over their entire distribution range. Information about the current status and main threats is needed to implement effective conservation measures. 2. This study presents a survey (2003/2004) of the largest Nepalese gharial population in the Chitwan National Park that has benefited from regular re-introduction of young gharials since 1981. 3. Population size estimates fluctuate between 34 (2003) and 38 (2004). The reintroduction programme, although of limited success, has helped to maintain the gharial population. 4. Gharials bask preferentially in large sand banks, and these sites must be protected. 5. The main threats are from a dam that causes fish depletion and flushes gharials from the protected area, sand mining and grazing that destroy basking sites, fishing that causes food shortage, drift nets that kill gharial, and water pollution. 6. Improvement in the survival of reintroduced gharials is needed. Strict protection of preferred basking sites and prohibition of fishing in the main settling zones are the principal conservation measures while in the long term, education and participatory management by local people are also necessary.
    [Show full text]
  • Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus Intermedius) at the El Frío Biological Station, Venezuela
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff RESEARCH ARTICLE Multiple Paternity in a Reintroduced Population of the Orinoco Crocodile (Crocodylus intermedius) at the El Frío Biological Station, Venezuela Natalia A. Rossi Lafferriere1,2☯*, Rafael Antelo3,4,5☯, Fernando Alda4,6, Dick Mårtensson7, Frank Hailer8,9, Santiago Castroviejo-Fisher10, José Ayarzagüena5†, Joshua R. Ginsberg1,11, Javier Castroviejo5,12, Ignacio Doadrio4, Carles Vilá13, George Amato2 1 Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America, 2 Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, New York, United States of America, 3 Fundación Palmarito Casanare, Bogotá, Colombia, 4 Dpto. Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain, 5 Estación Biológica El Frío, Apure, Venezuela, 6 LSU Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America, 7 Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden, 8 School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, United Kingdom, 9 Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United OPEN ACCESS States of America, 10 Lab. de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande Citation: Rossi Lafferriere NA, Antelo R, Alda F, do Sul (PUCRS), Porto Alegre, Brasil, 11 Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America, 12 Asociación Amigos de Doñana, Seville, Spain, 13 Conservation and Evolutionary Mårtensson D, Hailer F, Castroviejo-Fisher S, et al.
    [Show full text]
  • Phylogenetic Analysis of a New Morphological Dataset Elucidates the Evolutionary History of Crocodylia and Resolves the Long-Standing Gharial Problem
    Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem Jonathan P. Rio1 and Philip D. Mannion2* 1Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK 2Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK *Corresponding author (email address: [email protected]) ABSTRACT First appearing in the latest Cretaceous, Crocodylia is a clade of mostly semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving extant and fossil crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister relationship between the extant gharials, which appear to be more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia, based on a critical reappraisal of published crocodylian character data matrices and extensive first-hand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone.
    [Show full text]
  • Comparison of Serum Phospholipase A2 Activities of All Known Extant Crocodylian Species
    Advances in Biological Chemistry, 2017, 7, 151-160 http://www.scirp.org/journal/abc ISSN Online: 2162-2191 ISSN Print: 2162-2183 Comparison of Serum Phospholipase A2 Activities of All Known Extant Crocodylian Species Mark Merchant1*, Charles McAdon1, Stephanie Mead1, Justin McFatter1, Caleb D. McMahan2, Rebeckah Griffith3, Christopher M. Murray4 1Department of Chemistry, McNeese State University, Lake Charles, LA, USA 2The Field Museum of Natural History, Chicago, IL, USA 3Department of Math, Computer Science, and Statistics, McNeese State University, Lake Charles, LA, USA 4Department of Biology, Tennessee Technological University, Cookeville, TN, USA How to cite this paper: Merchant, M., Abstract McAdon, C., Mead, S., McFatter, J., McMahan, C.D., Griffith, R. and Murray, C.M. (2017) Serum samples from all 23 extant crocodilian species were tested for phospholipase Comparison of Serum Phospholipase A 2 A2 (PLA2) activity against nine different bacterial species. The data were used Activities of All Known Extant Crocodylian to generate a PLA activity profile for each crocodilian species, and the data were Species. Advances in Biological Chemistry, 2 7, 151-160. used to compare the activities of the three main lineages (Alligatoridae, Crocody- https://doi.org/10.4236/abc.2017.74010 lidae, and Gavialidae), the seven different genera, and to compare all of the 23 individual species. The data revealed that the three lineages of crocodilians (Alli- Received: July 22, 2017 Accepted: August 25, 2017 gatoridae, Crocodylidae, and Gavialidae) exhibited PLA2 activities toward nine spe- Published: August 28, 2017 cies of bacteria that were statistically distinguishable. In addition, the PLA2 activi- ties of crocodilians in a specific genus tended to be more similar to other mem- Copyright © 2017 by authors and bers in their genus than to members of other crocodilian genera.
    [Show full text]
  • Leidyosuchus (Crocodylia: Alligatoroidea) from the Upper Cretaceous Kaiparowits Formation (Late Campanian) of Utah, USA
    PaleoBios 30(3):72–88, January 31, 2014 © 2014 University of California Museum of Paleontology Leidyosuchus (Crocodylia: Alligatoroidea) from the Upper Cretaceous Kaiparowits Formation (late Campanian) of Utah, USA ANDREW A. FARKE,1* MADISON M. HENN,2 SAMUEL J. WOODWARD,2 and HEENDONG A. XU2 1Raymond M. Alf Museum of Paleontology, 1175 West Baseline Road, Claremont, CA 91711 USA; email: afarke@ webb.org. 2The Webb Schools, 1175 West Baseline Road, Claremont, CA 91711 USA Several crocodyliform lineages inhabited the Western Interior Basin of North America during the late Campanian (Late Cretaceous), with alligatoroids in the Kaiparowits Formation of southern Utah exhibiting exceptional diversity within this setting. A partial skeleton of a previously unknown alligatoroid taxon from the Kaiparowits Formation may represent the fifth alligatoroid and sixth crocodyliform lineage from this unit. The fossil includes the lower jaws, numerous osteoderms, vertebrae, ribs, and a humerus. The lower jaw is generally long and slender, and the dentary features 22 alveoli with conical, non-globidont teeth. The splenial contributes to the posterior quarter of the mandibu- lar symphysis, which extends posteriorly to the level of alveolus 8, and the dorsal process of the surangular is forked around the terminal alveolus. Dorsal midline osteoderms are square. This combination of character states identifies the Kaiparowits taxon as the sister taxon of the early alligatoroid Leidyosuchus canadensis from the Late Cretaceous of Alberta, the first verified report of theLeidyosuchus (sensu stricto) lineage from the southern Western Interior Basin. This phylogenetic placement is consistent with at least occasional faunal exchanges between northern and southern parts of the Western Interior Basin during the late Campanian, as noted for other reptile clades.
    [Show full text]
  • A New Caimanine (Crocodylia, Alligatoroidea) Species from the Solimões Formation of Brazil and the Phylogeny of Caimaninae
    Journal of Vertebrate Paleontology ISSN: 0272-4634 (Print) 1937-2809 (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 A new caimanine (Crocodylia, Alligatoroidea) species from the Solimões Formation of Brazil and the phylogeny of Caimaninae Jonas P. Souza-Filho, Rafael G. Souza, Annie Schmaltz Hsiou, Douglas Riff, Edson Guilherme, Francisco Ricardo Negri & Giovanne M. Cidade To cite this article: Jonas P. Souza-Filho, Rafael G. Souza, Annie Schmaltz Hsiou, Douglas Riff, Edson Guilherme, Francisco Ricardo Negri & Giovanne M. Cidade (2019): A new caimanine (Crocodylia, Alligatoroidea) species from the Solimões Formation of Brazil and the phylogeny of Caimaninae, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2018.1528450 To link to this article: https://doi.org/10.1080/02724634.2018.1528450 View supplementary material Published online: 29 Jan 2019. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1528450 (24 pages) # by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2018.1528450 ARTICLE ~ A NEW CAIMANINE (CROCODYLIA, ALLIGATOROIDEA) SPECIES FROM THE SOLIMOES FORMATION OF BRAZIL AND THE PHYLOGENY OF CAIMANINAE JONAS P. SOUZA-FILHO,1 RAFAEL G. SOUZA,2 ANNIE SCHMALTZ HSIOU,3 DOUGLAS RIFF,4 EDSON GUILHERME,1 FRANCISCO RICARDO NEGRI,5 and GIOVANNE M. CIDADE,3 1Laboratorio de Paleontologia, Universidade Federal do Acre, Rio Branco,
    [Show full text]
  • Gharial Gavialis Gangeticus Colin Stevenson1 and Romulus Whitaker2
    Gharial Gavialis gangeticus Colin Stevenson1 and Romulus Whitaker2 1 Crocodile Encounters, 37 Mansfi eld Drive, Merstham, Surrey, UK ([email protected]); 2 Ex-Offi cio Trustee, Madras Crocodile Bank Trust, PO Box 21, Chengalpattu, Tamil Nadu 603001, India ([email protected]) Common Names: Gharial, Indian Gharial, gavial regarded as an adaptation to a predominantly fi sh diet. It is one of the largest of the living crocodilians (males up to 6 Range: India, Nepal, Bangladesh (extinct?), Bhutan (extinct), m, and average weight of around 160 kg). The species is Myanmar (extinct), Pakistan (extinct) the only member of the Family Gavialidae, although recent molecular evidence suggests that Tomistoma schlegelii also belongs to this family (Densmore 1983; Willis et al. 2007). The Gharial is arguably the most thoroughly aquatic of the extant crocodilians, and adults apparently do not have the ability to walk in a semi-upright stance as other crocodilians do (Bustard and Singh 1978; Whitaker and Basu 1983). Adult males grow a bulbous nasal appendage, which resembles an Indian pot called a ‘ghara’, from which the species derives its name. Figure 1. Distribution of Gavialis gangeticus. Conservation Overview CITES: Appendix I CSG Action Plan: Availability of survey data: Inadequate Figure 2. Gavialis gangeticus, featuring the distinctive ’ghara’ Need for wild population recovery: Highest of adult males. Photograph: Grahame Webb. Potential for sustainable management: Low 2009 IUCN Red List: CR (Critically Endangered. Criteria Historically, G. gangeticus was found in the northern part of A2bc. C1. A2: population decline ≥80% over the last 10 years the Indian subcontinent, in the Indus (Pakistan), Ganges (India or 3 generations (whichever is longer); C1: population size and Nepal), Mahanadi (India) and Brahmaputra (Bangladesh, estimated at less than 250 breeding adults; IUCN 2009) (last India and Bhutan) River systems.
    [Show full text]
  • Study of Habitat and Population of Endangered Gavialis Gangeticus in Narayani River of Chitwan National Park, Nepal
    Study of Habitat and Population of Endangered Gavialis gangeticus in Narayani River of Chitwan National Park, Nepal Sunil L Rajbhandari, Principal Investigator Paras M Acharya, Co-Investigator 1st Phase Final Report submitted to The Rufford Small Grants Foundation, UK 28 March, 2013 1 Acknowledgement Our sincere thanks go to THE RUFFORD FOUNDATION, Small Grants Program, and U.K. for the funding of the 1st phase research. The authors would like to express their sincere thanks to the following institutions and individuals for their valuable support: Department of National Parks and Wildlife Conservation (DNPWC) for granting permission to carry out this research in Chitwan National Park (CNP) Megh Bahadur Pandey, Director-General, DNPWC Krishna Acharya, Former Director-General, DNPWC Phanendra Kharel, Chief Warden, CNP Jhamak B Karki, Former Chief Warden, CNP Prativa Rajbhandari, Jawalakhel Kunta Adhikari, Bhaktapur Ram Prit Yadav, Coordinator/TAL/WWF Pradeep Khanal, TAL/WWF Maheshwor Dhakal, Ecologist, DNPWC Bishnu Thapaliya, Assistant Conservation Officer Amir Maharjan, Assistant Warden, Sauraha, CNP Bhumi R Upadhaya, Assisstant Warden, Amaltari Western Sector, CNP Santosh Bhagat, Ranger, DNPWC Naresh Subedi, Chief, Nepal Trust for Nature Conservation (NTNC) Bed B Khadka, Assistant Warden, Gharial Breeding Centre, CNP Mahesh Pathak, GIS Expert, Nepal Engineering College Megh R Giri, Senior Game Scout, Laukhani Post, CNP Rishi Bhurtel, Game Scout, Laukhani Post, CNP Ram Nath Yadav, Game Scout, Giddeni Post, CNP Padam Mahato, Game Scout,
    [Show full text]
  • EUSUCHIA: CROCODYLIDAE, TOMISTOMINAE) for the LATE TERTIARY of COSTA RICA and CENTRAL AMERICA Revista Geológica De América Central, Núm
    Revista Geológica de América Central ISSN: 0256-7024 [email protected] Universidad de Costa Rica Costa Rica Laurito, César A.; Valerio, Ana L. THE FIRST RECORD OF GAVIALOSUCHUS AMERICANUS SELLARDS (1915) † (EUSUCHIA: CROCODYLIDAE, TOMISTOMINAE) FOR THE LATE TERTIARY OF COSTA RICA AND CENTRAL AMERICA Revista Geológica de América Central, núm. 39, 2008, pp. 107-115 Universidad de Costa Rica San José, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=45437346008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Geológica de América Central, 39: 107-115, 2008 ISSN: 0256-7024 THE FIRST RECORD OF GAVIALOSUCHUS AMERICANUS SELLARDS (1915) † (EUSUCHIA: CROCODYLIDAE, TOMISTOMINAE) FOR THE LATE TERTIARY OF COSTA RICA AND CENTRAL AMERICA César A. Laurito1, 2* & Ana L. Valerio3 1INA, Instituto Nacional de Aprendizaje, CENETUR 2Investigador Asociado, Departamento de Historia Natural, Museo Nacional de Costa Rica; Apdo. 203-2200, Coronado, San José, Costa Rica. 3Departamento de Historia Natural, Museo Nacional de Costa Rica; Apdo. 749-1000, San José, Costa Rica. *Autor para contacto: [email protected] (Recibido 20/05/07; aceptado: 12/12/08) ABSTRACT: Fossil remains of false gharials or Tomistominae crocodiles, were recovered from fluvial sediments associated with Late Miocene-Early Pliocene sub-aquatic fan deltaic deposits of the Curré Formation, in southern Costa Rica. The record of long-snouted crocodiles from southern Central America allows for a better knowledge of the evolution and composition of the paleoherpetofauna and its paleobiogeographical relationships with North American paleofaunas.
    [Show full text]
  • First Record of a Tomistomine Crocodylian from Australia Jorgo Ristevski1*, Gilbert J
    www.nature.com/scientificreports OPEN First record of a tomistomine crocodylian from Australia Jorgo Ristevski1*, Gilbert J. Price2, Vera Weisbecker1,3 & Steven W. Salisbury1 Based on the known fossil record, the majority of crocodylians from the Cenozoic Era of Australia are referred to the extinct clade Mekosuchinae. The only extant crocodylians in Australia are two species of Crocodylus. Hence, the viewpoint that Crocodylus and mekosuchines have been the only crocodylians inhabiting Australia during the Cenozoic has remained largely undisputed. Herein we describe Australia’s frst tomistomine crocodylian, Gunggamarandu maunala gen. et sp. nov., thus challenging the notion of mekosuchine dominance during most of the Cenozoic. The holotype specimen of Gunggamarandu maunala derives from the Pliocene or Pleistocene of south-eastern Queensland, marking the southern-most global record for Tomistominae. Gunggamarandu maunala is known from a large, incomplete cranium that possesses a unique combination of features that distinguishes it from other crocodylians. Phylogenetic analyses place Gunggamarandu in a basal position within Tomistominae, specifcally as a sister taxon to Dollosuchoides from the Eocene of Europe. These results hint at a potential ghost lineage between European and Australian tomistomines going back more than 50 million years. The cranial proportions of the Gunggamarandu maunala holotype specimen indicate it is the largest crocodyliform yet discovered from Australia. Crocodylian evolution from the Australian Cenozoic is mainly characterized by the taxonomically rich and morphologically diverse crocodylian clade Mekosuchinae1–7. As currently understood, Australia’s mekosuchine fossil record spans from the Eocene 1,2,8,9 to the Pleistocene7,10–13, an inference based on remains collected across the continent, primarily the eastern half2–4,14.
    [Show full text]