bioRxiv preprint doi: https://doi.org/10.1101/2020.05.31.126953; this version posted June 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyclin-dependent kinase 2 (Cdk2) controls phosphatase-regulated signaling and function in platelets Paul R. Woods, Jr.,1,2 Brian L. Hood5, Sruti Shiva,$4 Thomas P. Conrads5, Sarah Suchko,2 Richard Steinman, 1,2,4# Departments oF Medicine1, Hillman Cancer Center2, Vascular Medicine Institute3, Department oF Molecular Pharmacology and Chemical Biology4, University of Pittsburgh School of Medicine; The Henry M. Jackson Foundation For the Advancement of Military Medicine, Inc., Inova Women’s Service Line, Inova Health System5 #Corresponding author: Richard Steinman, MD, PhD Associate Professor of Medicine and Pharmacology Associate Dean, Director Medical Scientist Training Program Director, Physician Scientist Training Program University of Pittsburgh School of Medicine 2.26f Hillman Cancer Center 5117 Centre Avenue Pittsburgh, PA 15213 USA phone: 412 6233237 fax: 412 6234840
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.05.31.126953; this version posted June 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Cell cycle regulatory molecules including cyclin-dependent kinases can be recruited into non-nuclear pathways to coordinate cell cycling with the energetic state oF the cell or with Functions such as motility.