On Some Osculating Figures of the Plane Curve, by Kazuhiko MAEDA(Formerly Jusaku MAEDA),Seudai

Total Page:16

File Type:pdf, Size:1020Kb

On Some Osculating Figures of the Plane Curve, by Kazuhiko MAEDA(Formerly Jusaku MAEDA),Seudai On some Osculating Figures of the Plane Curve, by Kazuhiko MAEDA(formerly Jusaku MAEDA),Seudai. 1. The parabola of index n. e shall call the curve represented by W where x and y are rectangular coordinates of a point, a parabola of index n, n being a given number positive or negative. When n is positive, the origin is a point on the curve and the tangent at this point is the x-axis or y-axis according as n is greater or less than unity. When n is negative, the origin is no longer a point on the curve, and the x-axis is an asymptote of the curve. In all cases, the origin and the x-axis have special relation to the curve. And we shall call, for the sake of convenience, the origin the initial point, while the x-axis the initial line of the curve. The parabola of index n (1.1) may be represented parametrically by (1.2) where z is the Gaussian coordinate of a point on the curve and ƒÉ a real parameter. In general, the parabola of index n can be re- presented by where ƒÄ is any point on the curve, w the initial point of the curve, a complex constant, distinct from zero and ƒÉ a real parameter. ƒ¿ Let us denote by (M) a given curve and by M an ordinary point on this curve. Let s be the arc length of (M) measured from a certain fixed point on (M) to M, and k and p be respectively the, curvature and the radius of curvature of (M) at M If we denote by z the Gauesian coordinate of the point M, we have the fundamental equation of the curve (M) as follows: (1.4), where accents denote differentiation with respect to s. We shall denote by[n] the point given by (1.5). 262 KAZUHIKO MAEDA: We shall denote by (n) the tangent circle to (M) at M, whose centre coincides with the point [n]. f the parabola of index n (n•‚0,I 1) represented by (1.3) has contact of at least the second order with the given curve (M) at the point , we have the following relations M where z', z" are the values of dz/ds, d2z/ds2 at M, and ƒÉ, ƒÉ', ƒÉ" are real numbers. Consequently we obtain, from the last equation, (1.6) Let ƒÆ be the angle which the tangent to the parabola of indt x n (1.3) makes with the initial line. Then (1.7) Putting, in general, (1.8) we obtain (1.9) Putting (1.10) we get Therefore we see that the locus of the initial point of any parabola of index n having contact of at least the second order with a curve (M) at a point M is a curve represented by (1.12) In the particular case n=-1, on writing t instead of -t-2, the locus is (1.13) which represents a circle (-1/2). Hence a known theorem: ON SOMEOSCULATING FIGURES OF THE PLANE OURVE. 263 The locus of the centre of any rectangular hyperbola having contact of at least the second order with a curve (M) at a point M is a circle (-1/2)(1). In the case n=2, by putting (1.14) where k is a numerical constant, we have (1.15) If k =1 we have (1.16) which represents a circle (1/4). Hence a known theorem: The locus of the focus of any parabola having contact of at least the second order with a "curve (M) at a point M is a circle (1/4)(2). f k=-3, on writing t instead of t-1, we obtain I (1.17) which represents an elliptic limacon of Pascal. The axis of this. limacon is the normal MN to (M), and the acnode, focus and singular focus are respectively the points [-1/4], [1/16] and [-1/2]. Hence: Let (P) be ony parabola having contact of at least the second order with a curve (M) at a point M. Let F be the focus and V the vertex of (P). If we take a point U on the axis of (P) such that Uv=3VF, the locus of the point U of the variable parabola (P) is an elliptic limacon of Pascal whoseacnode, focus and singular focus- are respectively the points [-1/4], [1/16] and [-1/2]. Let us consider the case n=3/2. The focus of the semi-cubical parabola y3=x3 is the point (-4/27, 0). The locus of the focus of any semi-cubical parabola having contact of at least the second order with a curve (M) at a point M is given by (1.18) Let us put in general (1) J. Lemaire: Etude elementaire do I'hyperbole equilatere et de quelques courbee derivdes, p. 34. G. Loria: Spezielle algebralsche tend tranazendente ebene Kurven, Theorie and Geschichte I, p. 243. (2) A. Transon: Recherches sur la courbure des lignes et des surfaces, Journal de Math. 6 (1841), 202. 264 KAZUHIKO MAEDA: x, y being the coordinates of the point ƒÄ referred to the tangent MT and normal MN to (M) as coordinate axes. Putting we obtain By elimination of ƒÆ, we get (1.19) By the translation of the coordinate axes the above equation becomes This is an acnodal circular cubic having acndde at the point [1/3], And it is nothing but the associate curve (die Begleitkurre) of the cissoid of Diocles(1) : The normal MN is the axis of symmetry of the curve, and the singular focus is the point [1/4]. The director circle is Consequently the anallagmatic centre is the point M. The real asymptote is And the middle line is Hence: The locus of the focus of any semi-cubical parabola having contact of at least the second order with a given curve (M) at a point M is an acnodal circular cubic having the normal MN to (M) as axis of symmetry and the point M as anallagmatic centre. This curve is an associate curve of a cissoid of Dioeles. Let (Pn) be any parabola of index n having contact of at least the second order. with the curve (M) at the point M. We shall denote by g(ƒÁ), a straight line passing through the initial point of (Pn) and making an angle ƒÁ with the initial line. The map-equation of g (ƒÁ) is (1) G. Loria : Ebene Kurven I, p. 37. ON SOME OSCULATING FIGURES OF THE PLANE CURVE. 265 where being a real parameter. We shall now find the envelope of g (ƒÁ). Since we have the envelope condition gives Thus the envelope of g (ƒÁ) is (1.20) where we have written T instead of t2 and Putting (1.21) the envelope is given by (1.22) which represents a deltoid with centre at the point z0. The centre z0 is given by (1.23) When ƒÁ varies, n being fixed, the centre z0 describes a circle When n varies, this circle belongs to a coaxal system with the points M and [-1/2] as limiting points. Let (Pn) be any parabola of index n having contact of at least the second order with a curve (M) at a point M. Let g (ƒÁ) be a straight line which passes through *the initial point of (Pn) and 266 KAZUHIKO MAEDA : makes a given angle y with the initial line. Then the envelope of g (ƒÁ) is a deltoid. n the I special case n = -1, the envelope is given by (1.24) Let (H) be any rectangular hyperbola having contact of at least the second order with a curve (M) at a point M. The envelope of the asymptotes of (H) is a deltoid (ƒ¢) whose director circle is the circle (-1/2) and one of whose cusps is the point [-2]. The enve- lope of two lines, each of which passes through the centre of (H) and makes a given angle ƒÁ with an asymptote, is a deltoid obtained by rotating the deltoid (ƒ¢) through angle 4ƒÁ/3 about its centre(1). In the special case n=2, we may state as follows: Let (P) be any parabola having contact of at least the second order with a curve (M) at a point M. Let g (ƒÁ) be a straight line which passes through the vertex of (P) and makes a given angle with the tangent at the vertex. The envelope of g (ƒÁ) is a ƒÁ del- toid (2). A more general result is: Let (P) be any parabola having contact of at least the second order with a curve (M) at a point M. And let l be a straight line which is in, a fixed position relative to (P). Then the envelope of l is a deltoid. In the case and only in the case where l coincides with the directrix of (P), the envelope reduces to a point [-1/2](3). In the special case n=3, we may state as follows: Let (H) be any cubical parabola having contact of at least the second order with a curve (M) at a point M. And let g (ƒÁ) be a straight line which passes throughh the point of inflexion of (II) and makes a given angle y with the inflexional tangent. The envelope of g (ƒÁ) is a deltoid. In the special case n=3/2, we may state as follows: Let (ƒ°) be any semi-cubical parabola having contact of at least the second order with a curve (M) at a point M.
Recommended publications
  • Bézout's Theorem
    Bézout's theorem Toni Annala Contents 1 Introduction 2 2 Bézout's theorem 4 2.1 Ane plane curves . .4 2.2 Projective plane curves . .6 2.3 An elementary proof for the upper bound . 10 2.4 Intersection numbers . 12 2.5 Proof of Bézout's theorem . 16 3 Intersections in Pn 20 3.1 The Hilbert series and the Hilbert polynomial . 20 3.2 A brief overview of the modern theory . 24 3.3 Intersections of hypersurfaces in Pn ...................... 26 3.4 Intersections of subvarieties in Pn ....................... 32 3.5 Serre's Tor-formula . 36 4 Appendix 42 4.1 Homogeneous Noether normalization . 42 4.2 Primes associated to a graded module . 43 1 Chapter 1 Introduction The topic of this thesis is Bézout's theorem. The classical version considers the number of points in the intersection of two algebraic plane curves. It states that if we have two algebraic plane curves, dened over an algebraically closed eld and cut out by multi- variate polynomials of degrees n and m, then the number of points where these curves intersect is exactly nm if we count multiple intersections and intersections at innity. In Chapter 2 we dene the necessary terminology to state this theorem rigorously, give an elementary proof for the upper bound using resultants, and later prove the full Bézout's theorem. A very modest background should suce for understanding this chapter, for example the course Algebra II given at the University of Helsinki should cover most, if not all, of the prerequisites. In Chapter 3, we generalize Bézout's theorem to higher dimensional projective spaces.
    [Show full text]
  • Toponogov.V.A.Differential.Geometry
    Victor Andreevich Toponogov with the editorial assistance of Vladimir Y. Rovenski Differential Geometry of Curves and Surfaces A Concise Guide Birkhauser¨ Boston • Basel • Berlin Victor A. Toponogov (deceased) With the editorial assistance of: Department of Analysis and Geometry Vladimir Y. Rovenski Sobolev Institute of Mathematics Department of Mathematics Siberian Branch of the Russian Academy University of Haifa of Sciences Haifa, Israel Novosibirsk-90, 630090 Russia Cover design by Alex Gerasev. AMS Subject Classification: 53-01, 53Axx, 53A04, 53A05, 53A55, 53B20, 53B21, 53C20, 53C21 Library of Congress Control Number: 2005048111 ISBN-10 0-8176-4384-2 eISBN 0-8176-4402-4 ISBN-13 978-0-8176-4384-3 Printed on acid-free paper. c 2006 Birkhauser¨ Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and re- trieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (TXQ/EB) 987654321 www.birkhauser.com Contents Preface ....................................................... vii About the Author .............................................
    [Show full text]
  • Arxiv:1912.10980V2 [Math.AG] 28 Jan 2021 6
    Automorphisms of real del Pezzo surfaces and the real plane Cremona group Egor Yasinsky* Universität Basel Departement Mathematik und Informatik Spiegelgasse 1, 4051 Basel, Switzerland ABSTRACT. We study automorphism groups of real del Pezzo surfaces, concentrating on finite groups acting with invariant Picard number equal to one. As a result, we obtain a vast part of classification of finite subgroups in the real plane Cremona group. CONTENTS 1. Introduction 2 1.1. The classification problem2 1.2. G-surfaces3 1.3. Some comments on the conic bundle case4 1.4. Notation and conventions6 2. Some auxiliary results7 2.1. A quick look at (real) del Pezzo surfaces7 2.2. Sarkisov links8 2.3. Topological bounds9 2.4. Classical linear groups 10 3. Del Pezzo surfaces of degree 8 10 4. Del Pezzo surfaces of degree 6 13 5. Del Pezzo surfaces of degree 5 16 arXiv:1912.10980v2 [math.AG] 28 Jan 2021 6. Del Pezzo surfaces of degree 4 18 6.1. Topology and equations 18 6.2. Automorphisms 20 6.3. Groups acting minimally on real del Pezzo quartics 21 7. Del Pezzo surfaces of degree 3: cubic surfaces 28 Sylvester non-degenerate cubic surfaces 34 7.1. Clebsch diagonal cubic 35 *[email protected] Keywords: Cremona group, conic bundle, del Pezzo surface, automorphism group, real algebraic surface. 1 2 7.2. Cubic surfaces with automorphism group S4 36 Sylvester degenerate cubic surfaces 37 7.3. Equianharmonic case: Fermat cubic 37 7.4. Non-equianharmonic case 39 7.5. Non-cyclic Sylvester degenerate surfaces 39 8. Del Pezzo surfaces of degree 2 40 9.
    [Show full text]
  • Chapter 1 Geometry of Plane Curves
    Chapter 1 Geometry of Plane Curves Definition 1 A (parametrized) curve in Rn is a piece-wise differentiable func- tion α :(a, b) Rn. If I is any other subset of R, α : I Rn is a curve provided that α→extends to a piece-wise differentiable function→ on some open interval (a, b) I. The trace of a curve α is the set of points α ((a, b)) Rn. ⊃ ⊂ AsubsetS Rn is parametrized by α if and only if there exists set I R ⊂ ⊆ such that α : I Rn is a curve for which α (I)=S. A one-to-one parame- trization α assigns→ and orientation toacurveC thought of as the direction of increasing parameter, i.e., if s<t,the direction of increasing parameter runs from α (s) to α (t) . AsubsetS Rn may be parametrized in many ways. ⊂ Example 2 Consider the circle C : x2 + y2 =1and let ω>0. The curve 2π α : 0, R2 given by ω → ¡ ¤ α(t)=(cosωt, sin ωt) . is a parametrization of C for each choice of ω R. Recall that the velocity and acceleration are respectively given by ∈ α0 (t)=( ω sin ωt, ω cos ωt) − and α00 (t)= ω2 cos 2πωt, ω2 sin 2πωt = ω2α(t). − − − The speed is given by ¡ ¢ 2 2 v(t)= α0(t) = ( ω sin ωt) +(ω cos ωt) = ω. (1.1) k k − q 1 2 CHAPTER 1. GEOMETRY OF PLANE CURVES The various parametrizations obtained by varying ω change the velocity, ac- 2π celeration and speed but have the same trace, i.e., α 0, ω = C for each ω.
    [Show full text]
  • 1915-16.] the " Geometria Organica" of Colin Maclaurin. 87 V.—-The
    1915-16.] The " Geometria Organica" of Colin Maclaurin. 87 V.—-The " Geometria Organica " of Colin Maclaurin: A Historical and Critical Survey. By Charles Tweedie, M.A., B.Sc, Lecturer in Mathematics, Edinburgh University. (MS. received October 15, 1915. Bead December 6,1915.) INTRODUCTION. COLIN MACLATJBIN, the celebrated mathematician, was born in 1698 at Kilmodan in Argyllshire, where his father was minister of the parish. In 1709 he entered Glasgow University, where his mathematical talent rapidly developed under the fostering care of Professor Robert Simson. In 171*7 he successfully competed for the Chair of Mathematics in the Marischal College of Aberdeen University. In 1719 he came directly under the personal influence of Newton, when on a visit to London, bearing with him the manuscript of the Geometria Organica, published in quarto in 1720. The publication of this work immediately brought him into promi- nence in the scientific world. In 1725 he was, on the recommendation of Newton, elected to the Chair of Mathematics in Edinburgh University, which he occupied until his death in 1746. As a lecturer Maclaurin was a conspicuous success. He took great pains to make his subject as clear and attractive as possible, so much so that he made mathematics " a fashionable study." The labour of teaching his numerous students seriously curtailed the time he could spare for original research. In quantity his works do not bulk largely, but what he did produce was, in the main, of superlative quality, presented clearly and concisely. The Geometria Organica and the Geometrical Appendix to his Treatise on Algebra give him a place in the first rank of great geometers, forming as they do the basis of the theory of the Higher Plane Curves; while his Treatise of Fluxions (1742) furnished an unassailable bulwark and text-book for the study of the Calculus.
    [Show full text]
  • Real Rank Two Geometry Arxiv:1609.09245V3 [Math.AG] 5
    Real Rank Two Geometry Anna Seigal and Bernd Sturmfels Abstract The real rank two locus of an algebraic variety is the closure of the union of all secant lines spanned by real points. We seek a semi-algebraic description of this set. Its algebraic boundary consists of the tangential variety and the edge variety. Our study of Segre and Veronese varieties yields a characterization of tensors of real rank two. 1 Introduction Low-rank approximation of tensors is a fundamental problem in applied mathematics [3, 6]. We here approach this problem from the perspective of real algebraic geometry. Our goal is to give an exact semi-algebraic description of the set of tensors of real rank two and to characterize its boundary. This complements the results on tensors of non-negative rank two presented in [1], and it offers a generalization to the setting of arbitrary varieties, following [2]. A familiar example is that of 2 × 2 × 2-tensors (xijk) with real entries. Such a tensor lies in the closure of the real rank two tensors if and only if the hyperdeterminant is non-negative: 2 2 2 2 2 2 2 2 x000x111 + x001x110 + x010x101 + x011x100 + 4x000x011x101x110 + 4x001x010x100x111 −2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111 (1) −2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101 ≥ 0: If this inequality does not hold then the tensor has rank two over C but rank three over R. To understand this example geometrically, consider the Segre variety X = Seg(P1 × P1 × P1), i.e. the set of rank one tensors, regarded as points in the projective space P7 = 2 2 2 7 arXiv:1609.09245v3 [math.AG] 5 Apr 2017 P(C ⊗ C ⊗ C ).
    [Show full text]
  • Plotting Graphs of Parametric Equations
    Parametric Curve Plotter This Java Applet plots the graph of various primary curves described by parametric equations, and the graphs of some of the auxiliary curves associ- ated with the primary curves, such as the evolute, involute, parallel, pedal, and reciprocal curves. It has been tested on Netscape 3.0, 4.04, and 4.05, Internet Explorer 4.04, and on the Hot Java browser. It has not yet been run through the official Java compilers from Sun, but this is imminent. It seems to work best on Netscape 4.04. There are problems with Netscape 4.05 and it should be avoided until fixed. The applet was developed on a 200 MHz Pentium MMX system at 1024×768 resolution. (Cost: $4000 in March, 1997. Replacement cost: $695 in June, 1998, if you can find one this slow on sale!) For various reasons, it runs extremely slowly on Macintoshes, and slowly on Sun Sparc stations. The curves should move as quickly as Roadrunner cartoons: for a benchmark, check out the circular trigonometric diagrams on my Java page. This applet was mainly done as an exercise in Java programming leading up to more serious interactive animations in three-dimensional graphics, so no attempt was made to be comprehensive. Those who wish to see much more comprehensive sets of curves should look at: http : ==www − groups:dcs:st − and:ac:uk= ∼ history=Java= http : ==www:best:com= ∼ xah=SpecialP laneCurve dir=specialP laneCurves:html http : ==www:astro:virginia:edu= ∼ eww6n=math=math0:html Disclaimer: Like all computer graphics systems used to illustrate mathematical con- cepts, it cannot be error-free.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Differential Geometry
    Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2.
    [Show full text]
  • Diophantine Problems in Polynomial Theory
    Diophantine Problems in Polynomial Theory by Paul David Lee B.Sc. Mathematics, The University of British Columbia, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The College of Graduate Studies (Mathematics) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) August 2011 c Paul David Lee 2011 Abstract Algebraic curves and surfaces are playing an increasing role in mod- ern mathematics. From the well known applications to cryptography, to computer vision and manufacturing, studying these curves is a prevalent problem that is appearing more often. With the advancement of computers, dramatic progress has been made in all branches of algebraic computation. In particular, computer algebra software has made it much easier to find rational or integral points on algebraic curves. Computers have also made it easier to obtain rational parametrizations of certain curves and surfaces. Each algebraic curve has an associated genus, essentially a classification, that determines its topological structure. Advancements on methods and theory on curves of genus 0, 1 and 2 have been made in recent years. Curves of genus 0 are the only algebraic curves that you can obtain a rational parametrization for. Curves of genus 1 (also known as elliptic curves) have the property that their rational points have a group structure and thus one can call upon the massive field of group theory to help with their study. Curves of higher genus (such as genus 2) do not have the background and theory that genus 0 and 1 do but recent advancements in theory have rapidly expanded advancements on the topic.
    [Show full text]
  • Generalization of the Pedal Concept in Bidimensional Spaces. Application to the Limaçon of Pascal• Generalización Del Concep
    Generalization of the pedal concept in bidimensional spaces. Application to the limaçon of Pascal• Irene Sánchez-Ramos a, Fernando Meseguer-Garrido a, José Juan Aliaga-Maraver a & Javier Francisco Raposo-Grau b a Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid, España. [email protected], [email protected], [email protected] b Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid, Madrid, España. [email protected] Received: June 22nd, 2020. Received in revised form: February 4th, 2021. Accepted: February 19th, 2021. Abstract The concept of a pedal curve is used in geometry as a generation method for a multitude of curves. The definition of a pedal curve is linked to the concept of minimal distance. However, an interesting distinction can be made for . In this space, the pedal curve of another curve C is defined as the locus of the foot of the perpendicular from the pedal point P to the tangent2 to the curve. This allows the generalization of the definition of the pedal curve for any given angle that is not 90º. ℝ In this paper, we use the generalization of the pedal curve to describe a different method to generate a limaçon of Pascal, which can be seen as a singular case of the locus generation method and is not well described in the literature. Some additional properties that can be deduced from these definitions are also described. Keywords: geometry; pedal curve; distance; angularity; limaçon of Pascal. Generalización del concepto de curva podal en espacios bidimensionales. Aplicación a la Limaçon de Pascal Resumen El concepto de curva podal está extendido en la geometría como un método generativo para multitud de curvas.
    [Show full text]
  • Strophoids, a Family of Cubic Curves with Remarkable Properties
    Hellmuth STACHEL STROPHOIDS, A FAMILY OF CUBIC CURVES WITH REMARKABLE PROPERTIES Abstract: Strophoids are circular cubic curves which have a node with orthogonal tangents. These rational curves are characterized by a series or properties, and they show up as locus of points at various geometric problems in the Euclidean plane: Strophoids are pedal curves of parabolas if the corresponding pole lies on the parabola’s directrix, and they are inverse to equilateral hyperbolas. Strophoids are focal curves of particular pencils of conics. Moreover, the locus of points where tangents through a given point contact the conics of a confocal family is a strophoid. In descriptive geometry, strophoids appear as perspective views of particular curves of intersection, e.g., of Viviani’s curve. Bricard’s flexible octahedra of type 3 admit two flat poses; and here, after fixing two opposite vertices, strophoids are the locus for the four remaining vertices. In plane kinematics they are the circle-point curves, i.e., the locus of points whose trajectories have instantaneously a stationary curvature. Moreover, they are projections of the spherical and hyperbolic analogues. For any given triangle ABC, the equicevian cubics are strophoids, i.e., the locus of points for which two of the three cevians have the same lengths. On each strophoid there is a symmetric relation of points, so-called ‘associated’ points, with a series of properties: The lines connecting associated points P and P’ are tangent of the negative pedal curve. Tangents at associated points intersect at a point which again lies on the cubic. For all pairs (P, P’) of associated points, the midpoints lie on a line through the node N.
    [Show full text]