Diophantine Problems in Polynomial Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1912.10980V2 [Math.AG] 28 Jan 2021 6
Automorphisms of real del Pezzo surfaces and the real plane Cremona group Egor Yasinsky* Universität Basel Departement Mathematik und Informatik Spiegelgasse 1, 4051 Basel, Switzerland ABSTRACT. We study automorphism groups of real del Pezzo surfaces, concentrating on finite groups acting with invariant Picard number equal to one. As a result, we obtain a vast part of classification of finite subgroups in the real plane Cremona group. CONTENTS 1. Introduction 2 1.1. The classification problem2 1.2. G-surfaces3 1.3. Some comments on the conic bundle case4 1.4. Notation and conventions6 2. Some auxiliary results7 2.1. A quick look at (real) del Pezzo surfaces7 2.2. Sarkisov links8 2.3. Topological bounds9 2.4. Classical linear groups 10 3. Del Pezzo surfaces of degree 8 10 4. Del Pezzo surfaces of degree 6 13 5. Del Pezzo surfaces of degree 5 16 arXiv:1912.10980v2 [math.AG] 28 Jan 2021 6. Del Pezzo surfaces of degree 4 18 6.1. Topology and equations 18 6.2. Automorphisms 20 6.3. Groups acting minimally on real del Pezzo quartics 21 7. Del Pezzo surfaces of degree 3: cubic surfaces 28 Sylvester non-degenerate cubic surfaces 34 7.1. Clebsch diagonal cubic 35 *[email protected] Keywords: Cremona group, conic bundle, del Pezzo surface, automorphism group, real algebraic surface. 1 2 7.2. Cubic surfaces with automorphism group S4 36 Sylvester degenerate cubic surfaces 37 7.3. Equianharmonic case: Fermat cubic 37 7.4. Non-equianharmonic case 39 7.5. Non-cyclic Sylvester degenerate surfaces 39 8. Del Pezzo surfaces of degree 2 40 9. -
Real Rank Two Geometry Arxiv:1609.09245V3 [Math.AG] 5
Real Rank Two Geometry Anna Seigal and Bernd Sturmfels Abstract The real rank two locus of an algebraic variety is the closure of the union of all secant lines spanned by real points. We seek a semi-algebraic description of this set. Its algebraic boundary consists of the tangential variety and the edge variety. Our study of Segre and Veronese varieties yields a characterization of tensors of real rank two. 1 Introduction Low-rank approximation of tensors is a fundamental problem in applied mathematics [3, 6]. We here approach this problem from the perspective of real algebraic geometry. Our goal is to give an exact semi-algebraic description of the set of tensors of real rank two and to characterize its boundary. This complements the results on tensors of non-negative rank two presented in [1], and it offers a generalization to the setting of arbitrary varieties, following [2]. A familiar example is that of 2 × 2 × 2-tensors (xijk) with real entries. Such a tensor lies in the closure of the real rank two tensors if and only if the hyperdeterminant is non-negative: 2 2 2 2 2 2 2 2 x000x111 + x001x110 + x010x101 + x011x100 + 4x000x011x101x110 + 4x001x010x100x111 −2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111 (1) −2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101 ≥ 0: If this inequality does not hold then the tensor has rank two over C but rank three over R. To understand this example geometrically, consider the Segre variety X = Seg(P1 × P1 × P1), i.e. the set of rank one tensors, regarded as points in the projective space P7 = 2 2 2 7 arXiv:1609.09245v3 [math.AG] 5 Apr 2017 P(C ⊗ C ⊗ C ). -
Weierstrass Points of Superelliptic Curves
Weierstrass points of superelliptic curves C. SHOR a T. SHASKA b a Department of Mathematics, Western New England University, Springfield, MA, USA; E-mail: [email protected] b Department of Mathematics, Oakland University, Rochester, MI, USA; E-mail: [email protected] Abstract. In this lecture we give a brief introduction to Weierstrass points of curves and computational aspects of q-Weierstrass points on superel- liptic curves. Keywords. hyperelliptic curves, superelliptic curves, Weierstrass points Introduction These lectures are prepared as a contribution to the NATO Advanced Study In- stitute held in Ohrid, Macedonia, in August 2014. The topic of the conference was on the arithmetic of superelliptic curves, and this lecture will focus on the Weierstrass points of such curves. Since the Weierstrass points are an important concept of the theory of Riemann surfaces and algebraic curves and serve as a prerequisite for studying the automorphisms of the curves we will give in this lecture a detailed account of holomorphic and meromorphic functions of Riemann arXiv:1502.06285v1 [math.CV] 22 Feb 2015 surfaces, the proofs of the Weierstrass and Noether gap theorems, the Riemann- Hurwitz theorem, and the basic definitions and properties of higher-order Weier- strass points. Weierstrass points of algebraic curves are defined as a consequence of the important theorem of Riemann-Roch in the theory of algebraic curves. As an immediate application, the set of Weierstrass points is an invariant of a curve which is useful in the study of the curve’s automorphism group and the fixed points of automorphisms. In Part 1 we cover some of the basic material on Riemann surfaces and algebraic curves and their Weierstrass points. -
Combination of Cubic and Quartic Plane Curve
IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis. -
Weierstrass Points on Cyclic Covers of the Projective Line 3357
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 348, Number 8, August 1996 WEIERSTRASS POINTS ON CYCLIC COVERS OFTHEPROJECTIVELINE CHRISTOPHER TOWSE Abstract. We are interested in cyclic covers of the projective line which are totally ramified at all of their branch points. We begin with curves given by an equation of the form yn = f(x), where f is a polynomial of degree d. Under a mild hypothesis, it is easy to see that all of the branch points must be Weierstrass points. Our main problem is to find the total Weierstrass weight of these points, BW. We obtain a lower bound for BW,whichweshowisexact if n and d are relatively prime. As a fraction of the total Weierstrass weight of all points on the curve, we get the following particularly nice asymptotic formula (as well as an interesting exact formula): BW n +1 lim = , d g3 g 3(n 1)2 →∞ − − where g is the genus of the curve. In the case that n = 3 (cyclic trigonal curves), we are able to show in most cases that for sufficiently large primes p, the branch points and the non-branch Weierstrass points remain distinct modulo p. Introduction A Weierstrass point is a point on a curve such that there exists a non-constant function which has a low order pole at the point and no other poles. By low order we mean that the pole has order less than or equal to the genus g of the curve. The Riemann-Roch theorem shows that every point on a curve has a (non-constant) function associated to it which has a pole of order less than or equal to g +1and no other poles, so Weierstrass points are somewhat special. -
Gap Sequences of 1-Weierstrass Points on Non-Hyperelliptic Curves
Gap sequences of 1-Weierstrass points on non-hyperelliptic curves of genus 10 Mohammed A. Saleem1 and Eslam E. Badr2 1Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt 2Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt Emails: [email protected] [email protected] Abstract In this paper, we compute the 1-gap sequences of 1-Weierstrass points of non-hyperelliptic smooth projective curves of genus 10. Furthermore, the ge- ometry of such points is classified as flexes, sextactic and tentactic points. Also, an upper bounds for their numbers are estimated. MSC 2010: 14H55, 14Q05 Keywords: 1-Weierstrass points, q-gap sequence, flexes , sextactic points, tentactic points, kanonical linear system, , Kuribayashi sextic curve. arXiv:1307.0078v1 [math.AG] 29 Jun 2013 1 0 Introduction Weierstrass points on curves have been extensively studied, in connection with many problems. For example, the moduli space Mg has been stratified with subvarieties whose points are isomorphism classes of curves with particular Weierstrass points. For more deatails, we refer for example [3], [6]. At first, the theory of the Weierstrass points was developed only for smooth curves, and for their canonical divisors. In the last years, starting from some papers by R. Lax and C. Widland (see [10], [11], [12], [13], [14], [18]), the theory has been reformulated for Gorenstein curves, where the invertible dualizing sheaf substitutes the canonical sheaf. In this contest, the singular points of a Gorenstein curve are always Weierstrass points. In [16], R. Notari developed a technique to compute the Weierstrass gap sequence at a given point, no matter if it is simple or singular, on a plane curve, with respect 0 to any linear system V ⊆ H C,OC(n) . -
Hyperelliptic Curves with Many Automorphisms
Hyperelliptic Curves with Many Automorphisms Nicolas M¨uller Richard Pink Department of Mathematics Department of Mathematics ETH Z¨urich ETH Z¨urich 8092 Z¨urich 8092 Z¨urich Switzerland Switzerland [email protected] [email protected] November 17, 2017 To Frans Oort Abstract We determine all complex hyperelliptic curves with many automorphisms and decide which of their jacobians have complex multiplication. arXiv:1711.06599v1 [math.AG] 17 Nov 2017 MSC classification: 14H45 (14H37, 14K22) 1 1 Introduction Let X be a smooth connected projective algebraic curve of genus g > 2 over the field of complex numbers. Following Rauch [17] and Wolfart [21] we say that X has many automorphisms if it cannot be deformed non-trivially together with its automorphism group. Given his life-long interest in special points on moduli spaces, Frans Oort [15, Question 5.18.(1)] asked whether the point in the moduli space of curves associated to a curve X with many automorphisms is special, i.e., whether the jacobian of X has complex multiplication. Here we say that an abelian variety A has complex multiplication over a field K if ◦ EndK(A) contains a commutative, semisimple Q-subalgebra of dimension 2 dim A. (This property is called “sufficiently many complex multiplications” in Chai, Conrad and Oort [6, Def. 1.3.1.2].) Wolfart [22] observed that the jacobian of a curve with many automorphisms does not generally have complex multiplication and answered Oort’s question for all g 6 4. In the present paper we answer Oort’s question for all hyperelliptic curves with many automorphisms. -
Arxiv:1012.2020V1 [Math.CV]
TRANSITIVITY ON WEIERSTRASS POINTS ZOË LAING AND DAVID SINGERMAN 1. Introduction An automorphism of a Riemann surface will preserve its set of Weier- strass points. In this paper, we search for Riemann surfaces whose automorphism groups act transitively on the Weierstrass points. One well-known example is Klein’s quartic, which is known to have 24 Weierstrass points permuted transitively by it’s automorphism group, PSL(2, 7) of order 168. An investigation of when Hurwitz groups act transitively has been made by Magaard and Völklein [19]. After a section on the preliminaries, we examine the transitivity property on several classes of surfaces. The easiest case is when the surface is hy- perelliptic, and we find all hyperelliptic surfaces with the transitivity property (there are infinitely many of them). We then consider surfaces with automorphism group PSL(2, q), Weierstrass points of weight 1, and other classes of Riemann surfaces, ending with Fermat curves. Basically, we find that the transitivity property property seems quite rare and that the surfaces we have found with this property are inter- esting for other reasons too. 2. Preliminaries Weierstrass Gap Theorem ([6]). Let X be a compact Riemann sur- face of genus g. Then for each point p ∈ X there are precisely g integers 1 = γ1 < γ2 <...<γg < 2g such that there is no meromor- arXiv:1012.2020v1 [math.CV] 9 Dec 2010 phic function on X whose only pole is one of order γj at p and which is analytic elsewhere. The integers γ1,...,γg are called the gaps at p. The complement of the gaps at p in the natural numbers are called the non-gaps at p. -
Determining the Automorphism Group of a Hyperelliptic Curve
Determining the Automorphism Group of a Hyperelliptic Curve ∗ Tanush Shaska Department of Mathematics University of California at Irvine 103 MSTB, Irvine, CA 92697 ABSTRACT 1. INTRODUCTION In this note we discuss techniques for determining the auto- Let Xg be an algebraic curve of genus g defined over an morphism group of a genus g hyperelliptic curve Xg defined algebraically closed field k of characteristic zero. We denote over an algebraically closed field k of characteristic zero. by Aut(Xg) the group of analytic (equivalently, algebraic) The first technique uses the classical GL2(k)-invariants of automorphisms of Xg. Then Aut(Xg) acts on the finite set binary forms. This is a practical method for curves of small of Weierstrass points of Xg. This action is faithful unless genus, but has limitations as the genus increases, due to the Xg is hyperelliptic, in which case its kernel is the group of fact that such invariants are not known for large genus. order 2 containing the hyperelliptic involution of Xg. Thus The second approach, which uses dihedral invariants of in any case, Aut(Xg) is a finite group. This was first proved hyperelliptic curves, is a very convenient method and works by Schwartz. In 1893 Hurwitz discovered what is now called well in all genera. First we define the normal decomposition the Riemann-Hurwitz formula. From this he derived that of a hyperelliptic curve with extra automorphisms. Then dihedral invariants are defined in terms of the coefficients of |Aut(Xg)| ≤ 84 (g − 1) this normal decomposition. We define such invariants inde- which is known as the Hurwitz bound. -
Geometry of Algebraic Curves
Geometry of Algebraic Curves Fall 2011 Course taught by Joe Harris Notes by Atanas Atanasov One Oxford Street, Cambridge, MA 02138 E-mail address: [email protected] Contents Lecture 1. September 2, 2011 6 Lecture 2. September 7, 2011 10 2.1. Riemann surfaces associated to a polynomial 10 2.2. The degree of KX and Riemann-Hurwitz 13 2.3. Maps into projective space 15 2.4. An amusing fact 16 Lecture 3. September 9, 2011 17 3.1. Embedding Riemann surfaces in projective space 17 3.2. Geometric Riemann-Roch 17 3.3. Adjunction 18 Lecture 4. September 12, 2011 21 4.1. A change of viewpoint 21 4.2. The Brill-Noether problem 21 Lecture 5. September 16, 2011 25 5.1. Remark on a homework problem 25 5.2. Abel's Theorem 25 5.3. Examples and applications 27 Lecture 6. September 21, 2011 30 6.1. The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33 Lecture 7. September 23, 2011 35 7.1. More on divisors 35 7.2. Riemann-Roch, finally 36 7.3. Fun applications 37 7.4. Sheaf cohomology 37 Lecture 8. September 28, 2011 40 8.1. Examples of low genus 40 8.2. Hyperelliptic curves 40 8.3. Low genus examples 42 Lecture 9. September 30, 2011 44 9.1. Automorphisms of genus 0 an 1 curves 44 9.2. -
Symmetry Types of Hyperelliptic Riemann Surfaces
MEMOIRES´ DE LA SMF 86 SYMMETRY TYPES OF HYPERELLIPTIC RIEMANN SURFACES Emilio Bujalance Francisco-Javier Cirre J.-M. Gamboa Grzegorz Gromadzki Soci´et´eMath´ematique de France 2001 Publi´eavecleconcoursduCentreNationaldelaRechercheScientifique 2000 Mathematics Subject Classification.— Key words and phrases.— Abstract.— X τ : X X → Aut±X X g ! 2 Résumé (Types de symétrie des surfaces de Riemann hyperelliptiques) X τ : X X → Aut±X X g ! 2 ! CONTENTS Introduction................................................................... 1 1. Preliminaries............................................................... 7 1.1. Klein surfaces and NEC groups.. 7 1.2. Symmetric Riemann surfaces. 13 1.3. Hyperelliptic real algebraic curves........................................ 15 2. Automorphism groups of symmetric hyperelliptic Riemann surfaces.. 21 2.1. On signatures of the automorphism groups.. 21 2.2. Number of real forms. 26 2.3. Automorphism groups of symmetric hyperelliptic Riemann surfaces. 43 3. Symmetry types of hyperelliptic Riemann surfaces.................... 49 3.1. Symmetry types of hyperelliptic algebraic curves of class I. 50 3.2. Symmetry types of hyperelliptic algebraic curves of class II. ............. 65 3.3. Symmetry types of hyperelliptic algebraic curves of class III. ........... 72 3.4. Symmetry types of hyperelliptic algebraic curves of class IV. ............. 79 3.5. Symmetry types of hyperelliptic algebraic curves of class V. ............. 92 3.6. Symmetry types of hyperelliptic algebraic curves of class VI. ............. 97 3.7. Symmetry types of hyperelliptic algebraic curves of class VII. ............102 3.8. Symmetry types of hyperelliptic algebraic curves of class VIII............109 3.9. Symmetry types of hyperelliptic algebraic curves of class IX. .............115 3.10. Symmetry types of hyperelliptic algebraic curves of class X. ..........117 Bibliography...................................................................119 INTRODUCTION Let X be a compact Riemann surface. -
Log Minimal Model Program for the Moduli Space of Stable Curves: the Second Flip
LOG MINIMAL MODEL PROGRAM FOR THE MODULI SPACE OF STABLE CURVES: THE SECOND FLIP JAROD ALPER, MAKSYM FEDORCHUK, DAVID ISHII SMYTH, AND FREDERICK VAN DER WYCK Abstract. We prove an existence theorem for good moduli spaces, and use it to construct the second flip in the log minimal model program for M g. In fact, our methods give a uniform self-contained construction of the first three steps of the log minimal model program for M g and M g;n. Contents 1. Introduction 2 Outline of the paper 4 Acknowledgments 5 2. α-stability 6 2.1. Definition of α-stability6 2.2. Deformation openness 10 2.3. Properties of α-stability 16 2.4. αc-closed curves 18 2.5. Combinatorial type of an αc-closed curve 22 3. Local description of the flips 27 3.1. Local quotient presentations 27 3.2. Preliminary facts about local VGIT 30 3.3. Deformation theory of αc-closed curves 32 3.4. Local VGIT chambers for an αc-closed curve 40 4. Existence of good moduli spaces 45 4.1. General existence results 45 4.2. Application to Mg;n(α) 54 5. Projectivity of the good moduli spaces 64 5.1. Main positivity result 67 5.2. Degenerations and simultaneous normalization 69 5.3. Preliminary positivity results 74 5.4. Proof of Theorem 5.5(a) 79 5.5. Proof of Theorem 5.5(b) 80 Appendix A. 89 References 92 1 2 ALPER, FEDORCHUK, SMYTH, AND VAN DER WYCK 1. Introduction In an effort to understand the canonical model of M g, Hassett and Keel introduced the log minimal model program (LMMP) for M .