A New Understanding of Dorsal Dysraphism with Lipoma (Lipomyeloschisis): Radiologic Evaluation and Surgical Correction

Total Page:16

File Type:pdf, Size:1020Kb

A New Understanding of Dorsal Dysraphism with Lipoma (Lipomyeloschisis): Radiologic Evaluation and Surgical Correction 103 A New Understanding of Dorsal Dysraphism with Lipoma (Lipomyeloschisis): Radiologic Evaluation and Surgical Correction Thomas P. Naidich 1 The spinal anomaly designated dorsal dysraphism with lipoma (Iipomyeloschisis) David G. McLone2 consists of skin-covered, focal spina bifida; focal partial clefting of the dorsal half of 2 Saffet Mutluer . 3 the spinal cord; continuity of the dorsal cleft with the central canal of the cord above (and occasionally below) the cleft; deficiency of the dura underlying the spina bifida; deep extension of subcutaneous lipoma through the spina bifid a and the dural defi­ ciency to insert directly into the cleft on the dorsal half of the cord; variable cephalic extension of lipoma into the contiguous central canal of the cord; and variable balloon­ ing of the subarachnoid space to form an associ3ted meningocele. The variable individual expressions of the anomaly are best understood by reference to their archetypal concept. Careful analysis of radiographic and surgical findings in human lipomyeloschisis and correlation with an animal model of lipomyeloschisis indicate that plain spine radiographs and high-resolution metrizamide computed tomographic my­ elography successfully delineate the precise anatomic derangements associated with lipomyeloschisis and provide the proper basis for planning surgical therapy of this condition. Spinal lipomas are distinct collections of fat associated with an abnormally large amount of connective tissue; they appear at least parti ally encapsulated, and have a definite connection with the leptomeninges or spinal cord [1). Intradural lipoma and lipomyelome(l ingocele are two forms of lipomyeloschisis (dorsal dysraphism with lipoma) [2-41). Analysis of a series of 14 patients suggests that these conditions may be understood most easil y in term s of variations about an archetype of the anomaly. Di splay of the specific anatomic derangements at every level by high- resolution transverse metrizamide computed tomographic (eT) myelography provides an important basis for pl anning correc­ tive surgery and for assessing both operative risk and the likelihood of successful outcome. This article appears in the March/ April 1983 issue of AJNR and the June 1983 issue of AJR. Received June 14. 1982; accepted after revi­ Materials and Methods sion October 16, 1982. The study material includes the presurgical pl ain spine radiographs, routine metrizamide Presented at the annual meeting of the Ameri­ can Society of Neuroradiology, Ch icago, April myelograms, and metrizamide CT myelograms from each of 14 pati ents with lipomyelo­ 1981. schisis. There were 11 females and three males. Six patients were between 1 month and , Departm ent of Radiology, Northwestern Uni­ 1 year of age. Seven were 2 -1 2 years old, and one was 35 years old. Th e lipoma was versity Medical School, and Children 's Memorial situated precisely in the midline in two pati ents and extended asymmetricall y away from the Hospital, 2300 Children's Plaza, Ch icago, IL midline in 10 pati ents (to th e left : seven; to the right: three). In two oth er pati ents, the site 60614. Address reprint requests to T. P. Naidich. of lipoma could not be determined because of pri or surgery. One pati ent had a skin tag 2 Department of Neurosurgery, Children's Me­ associated with the lipoma. morial Hospital and Northwestern University Med­ Five of the 14 pati ents had prior partial surgical correcti on of th e superficial extradural ical School, Chicago, IL 60614. component of the lipomyelomeningocele. All 14 patients underwent subsequent definitive 3 Present ad dress: Departm ent of Neurosur­ gery, Eg e Unive rsity Medical School, Bornova, surgery, at which time surgical observations were recorded, and intraoperati ve photograph s Izmir, Turkey. of the surgical dissecti on were obtained to document the correlation between radiography and in vivo anatomy. The fin al diagnoses were lipomyelomeningocele (seven pati ents), AJNR 4:103-116, March/ April 1983 0195-6108/ 83/ 0402- 0103 $00.00 intradural lipoma (two), and lipomyeloschi sis (exact nature obscured by partial pri or © American Roentgen Ray Society treatm ent) (five). 104 NAIDICH ET AL. AJNR:4, Mar. l Apr. 1983 A B c Fig. 1 .-Cross-sectional anatomy. A and B, Axial sections of 2 1-day-old dorsal halves of placode and projects posteri or to neural tissue within dorsal myeloschisti c chicken embryo with dorsal glycogen body. Myelin stain. dural defic iency. White Gs and Ms in dicate dorsal root ganglia and paraspinal Ventral lies toward top. Relations of normal av ian lumbosacral glycogen body musculature, respecti vely. B, 5 mm cephalad. Intact neural arch (A). Paired and dura depicted here are believed to be a paradigm for human lipomyelo­ ventral (V) and dorsal (D) nerve roots arise from pial surface of neural tissue. schisis. A, Intact skin (single crossed arrow) covers spina bifida. Bifid laminae Glycogen body ascends within dorsal deficiency to underlie intact laminae of (L) are joined by fibrovascular band (open arrowheads ). Dura (closed arrow­ more cephalic vertebra. Glycogen body only appears to be intradural at this heads) underlies entire in ner surface of vertebral canal except directly level. C, Anatomi c relati ons in human lipomyeloschi sis. Ventral at top. Dura beneath spina bifida. Instead of crossing under spina bifida, dura is reflected (small arrowheads ), placode (P), and subarachnoid space (SAS) extend out onto posterolateral aspect of placode (P) at ipsilateral dorsal nerve root entry of spinal canal between th e bifid laminae (L). Dura inserts onto placode just zone (asterisks ), leaving a median dorsal dural deficiency (DOD). Left and dorsal to entry of dorsal nerve roots (D). Pia-arachnoid forms single contin­ right halves of neural tissue are joined only ventral to remnant of central canal uous membrane whic h lines dura and is refl ected over ventral surface of (double crossed arrow) of spinal cord. Ventrat surface of placode is placode. Skin (crossed arrows ) is intact. Subcutaneous lipoma (U) inserts lined by pia mater, whic h is continuou s with arachnoid mater at dorsal root onto dorsal face of lipoma via fibrous subareolar layer (large arrowhead). G entry zones. Subarachnoid space (SAS) is c rossed by multiple arachnoid = dorsal root ganglion; M = paraspinal muscle. (Reprinted from [22].) trabeculae. Norm al avian glycogen body (black G) occupies midline between In each pati ent, preoperative myelography was performed in the CT and correlation with surgical findings, we present an decubitus position with the lipoma side dependent via lateral C1- archetype of lipomyeloschisis against which the details of C2 puncture monitored by vertical-beam fluoroscopy using metri­ each individual may be viewed as variations on a theme (fig . zamide in a concentration of 190-220 mg 11 m!. About 2 hr after 1). myelography, each patient underwent CT using an EMI 5005 gen­ Patients with dorsal dysraphism and lipoma typically ex­ eral scann er. In 11 of the 14 patients, CT was performed with the hibit a subcutaneous soft-tissue mass that occupies the high-resolution sector scan modification [42], using contiguous 5- mm-thick axial sections, 25.4 cm wedges, 140 kVp, 28 mA, and 70 midline and usually extends asymmetrically toward one side. sec scan time. Direct coronal im ages and computer reformatted Deep to this mass is a relatively focal spina bifid a that coronal and sagittal images were obtained in selected cases. usually involves the lumbosacral spine. The transition from Surgical and radiographic data were th en correlated with the normal to bifid vertebrae may be abrupt or gradual. A thick anatomic derangements observed in myelin-stained transverse sec­ fibrovascular band joins the laminae of the most cephalic tions of chicken embryos in which spina bifida was induced by vertebra with widely bifid laminae. Patients in whom a normal dorsal midline incision of the caudal spine and neural tube at 72- spinal canal reforms below the spina bifida frequently exhibit 90 hr after fertilizati on (just after closure of the posterior neuropore); a fibrovascular band joining the laminae of the most caudal the embryos were sacrificed at term (2 1 days) (fig. 1) [43 -47]. vertebra with widely bifid laminae as well. The band is Detail s of this technique for inducing myeloschisis and the results continuous with the periosteum of the laminae. The bands of that study are to be the subject of a separate report. are not present in the center of the spina bifida, and appear to be transitional elements that roof-over the canal at the Anatomic Relations in Lipomyeloschisis cranial and caudal ends of the spina bifida. Dossetor et al. [9], James and Oliff [14], Kaiser et al. In patients with lipomyelomeningocele, the meningocele [17], Kapl an and Quencer [18], Lohkamp et al. [23], Resjo and spinal cord herniate posteriorly into the subcutaneous et al. [30], Scatliff et al. [33], Schroeder et al. [34], and tissue under the fibrovascular band (NOT under the last Wolpert et al. [40] have contributed to our understanding of intact arch nor under narrowly bifid laminae). The fibrovas­ the CT appearance of dorsal dysraphism with lipoma. Bulcke cular band kinks and notches the superior surface of the et al. [48], Osborn and Koehl er [49], Chiu and Schapiro spinal cord and meningocele in all cases of lipomyelomen­ [50], and Schapiro and Chiu [51] have contributed to our ingocele. This band appears to tether the meningocele sac understanding of the CT appearance of the paraspinal mus­ and neural tissue, since they relax after surgical section of cul ature. On th e basis of our experience with high-resolution this band, and since, in at least some cases, cortical-evoked AJNR:4, Mar. / Apr. 1983 LlPOMYELOSCHISIS 105 Fig. 2.-Lipomyeloschisis in 10-year-old girl wilh previous, purely extradural repair of lipomye­ loschi sis. A and B, Axial secti on metrizamide CT.
Recommended publications
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Differences in Neural Stem Cell Identity and Differentiation Capacity Drive Divergent Regenerative Outcomes in Lizards and Salamanders
    Differences in neural stem cell identity and differentiation capacity drive divergent regenerative outcomes in lizards and salamanders Aaron X. Suna,b,c, Ricardo Londonoa, Megan L. Hudnalla, Rocky S. Tuana,c, and Thomas P. Lozitoa,1 aCenter for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; bMedical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and cDepartment of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15213 Edited by Robb Krumlauf, Stowers Institute for Medical Research, Kansas City, MO, and approved July 24, 2018 (received for review March 2, 2018) While lizards and salamanders both exhibit the ability to re- lizard tail regenerate (20), and the key to understanding this generate amputated tails, the outcomes achieved by each are unique arrangement of tissues is in identifying the patterning markedly different. Salamanders, such as Ambystoma mexicanum, signals involved. regenerate nearly identical copies of original tails. Regenerated lizard Both lizards and salamanders follow similar mechanisms of tails, however, exhibit important morphological differences compared tail development during embryonic development. The embryonic with originals. Some of these differences concern dorsoventral pat- spinal cord and surrounding structures are formed and patterned terning of regenerated skeletal and spinal cord tissues; regenerated by the neural tube (21, 22). The neural tube exhibits distinct + salamander tail tissues exhibit dorsoventral patterning, while re- domains: roof plate (characterized by expression of Pax7 , BMP- + + + grown lizard tissues do not. Additionally, regenerated lizard tails lack 2 , and Sox10 among others), lateral domain (Pax6 ), and floor + + characteristically roof plate-associated structures, such as dorsal root plate (Shh , FoxA2 ).
    [Show full text]
  • Reaction of Ependymal Cells to Spinal Cord Injury: a Potential Role for Oncostatin Pathway and Microglial Cells
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.12.428106; this version posted February 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Reaction of ependymal cells to spinal cord injury: a potential role for oncostatin pathway and microglial cells *1 *1 *1 2 2 1 R. Chevreau ​ , H Ghazale ,​ C Ripoll ,​ C Chalfouh ,​ Q Delarue ,​ A.L. Hemonnot ,​ H 1 ​ 3 ​ 4 ​ 5 ​ *2 ​ *1 ​ Hirbec ,​ S Wahane ,​ F Perrin ,​ H Noristani ,​ N Guerout ,​ JP Hugnot ​ ​ ​ ​ ​ ​ *equal contribution, listed in alphabetic order 1 Université de Montpellier, INSERM CNRS IGF, France ​ 2 Université de Rouen, France ​ 3 Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, ​ University of California, Los Angeles, Los Angeles CA 90095-1763, USA. 4 University of Montpellier, INSERM MMDN France ​ 5 Shriners Hospitals Pediatric Research Center, NY, USA ​ Abstract Ependymal cells with stem cell properties reside in the adult spinal cord around the central canal. They rapidly activate and proliferate after spinal cord injury, constituting a source of new cells. They produce neurons and glial cells in lower vertebrates but they mainly generate glial cells in mammals. The mechanisms underlying their activation and their glial-biased differentiation in mammals remain ill-defined. This represents an obstacle to control these cells. We addressed this issue using RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling during injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis.
    [Show full text]
  • Wnt/Β-Catenin Signaling Regulates Ependymal Cell Development and Adult Homeostasis
    Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis Liujing Xinga, Teni Anbarchiana, Jonathan M. Tsaia, Giles W. Plantb, and Roeland Nussea,c,1 aDepartment of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305; bDepartment of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305; and cHoward Hughes Medical Institute, Stanford, CA 94305 Contributed by Roeland Nusse, May 22, 2018 (sent for review February 23, 2018; reviewed by Bin Chen and Samuel Pleasure) In the adult mouse spinal cord, the ependymal cell population that precursors and are present before the onset of neurogenesis. surrounds the central canal is thought to be a promising source of They give rise to radial glial cells, which then become the pre- quiescent stem cells to treat spinal cord injury. Relatively little is dominant progenitors during gliogenesis (19, 20). Eventually, known about the cellular origin of ependymal cells during spinal ependymal cells are formed as the ventricle and the ventricular cord development, or the molecular mechanisms that regulate zone retract through the process of obliteration. This process is ependymal cells during adult homeostasis. Using genetic lineage accompanied by terminal differentiation and exit of radial glial tracing based on the Wnt target gene Axin2, we have character- cells from the ventricular zone (18, 19, 21–24). ized Wnt-responsive cells during spinal cord development. Our Compared with our knowledge about ependymal cells in the results revealed that Wnt-responsive progenitor cells are restricted brain, little is known about the cellular origin of spinal cord to the dorsal midline throughout spinal cord development, which ependymal cells.
    [Show full text]
  • The Fine Structure of Ependyma in the Brain Of
    THE FINE STRUCTURE OF EPENDYMA IN THE BRAIN OF THE RAT M. W. BRIGHTMAN, Ph.D., and S. L. PALAY, M.D. From the Laboratory of Neuroanatomical Sciences, National Institute of Neurological Diseases and Blindness, National Institutes of Health, Bethesda, Maryland. Dr. Palay's present address is Department of Anatomy, Harvard Medical School, Boston ABSTRACT The ciliated ependyma of the rat brain consists of a sheet of epithelial cells, the luminal surface of which is reflected over ciliary shafts and numerous evaginations of irregular di- mensions. The relatively straight lateral portions of the plasmalemma of contiguous cells are fused at discrete sites to form five-layered junctions or zonulae occludentes which obliterate the intercellular space. These fusions occur usually at some distance below the free surface either independently or in continuity with a second intercellular junction, the zonula adhaerens. The luminal junction is usually formed by a zonula adhaerens or, occasionally, by a zonula occludens. The finely granular and filamentous cytoplasm contains supranuclear dense bodies, some of which are probably lysosomes and dense whorls of perinuclear filaments which send fascicles toward the lateral plasmalemma. The apical regions of the cytoplasm contain the basal body complexes of neighboring cilia. These complexes include a striated basal foot and short, non-striated rootlets emanating from the wall of each basal body. The rootlets end in a zone of granules about the proximal region of the basal body, adjacent to which may lie a striated mass of variable shape. All components of the basal body complex of adjacent cilia are independent of each other.
    [Show full text]
  • Transcriptional Control of Hypothalamic Tanycyte
    TRANSCRIPTIONAL CONTROL OF HYPOTHALAMIC TANYCYTE DEVELOPMENT By Ana Lucia Miranda-Angulo A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2013 © 2013 Ana Lucia Miranda-Angulo All Rights Reserved Abstract The wall of the ventral third ventricle is composed of two distinct cell populations; tanycytes and ependymal cells. Tanycytes support several hypothalamic functions but little is known about the transcriptional network which regulates their development. We explored the developmental expression of multiple transcription factors by in situ hybridization and found that the retina and anterior neural fold homeobox transcription factor (Rax) was expressed in both ventricular progenitors of the hypothalamic primordium and differentiating tanycytes. Rax is known to participate in retina and hypothalamus development but nothing is known about its function in tanycytes. To explore the role of Rax in hypothalamic tanycyte development we generated Rax haploinsufficient mice. These mice appeared grossly normal, but careful examination revealed a thinning of the third ventricular wall and reduction of tanycyte and ependymal markers. These experiments show that Rax is required for tanycyte and ependymal cell progenitor proliferation and/or survival. Rax haploinsufficiency also resulted in ectopic presence of ependymal cells in the α2 tanycytic zone were few ependymal cells are normally found. Thus, the presence of ependymal cell in this zone suggests that Rax was required for α2 tanycyte differentiation. These changes in the ventricular wall were associated with reduced diffusion of Evans Blue tracer from the ventricle to the hypothalamic parenchyma. Furthermore, we have provided in vivo and in vitro evidence suggesting that RAX protein is secreted by tanycytes, and subsequently internalized by adjacent and distal cells.
    [Show full text]
  • Ependymal Lined Paraventricular Cerebral Cysts; a Report of Three Cases
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.36.4.611 on 1 August 1973. Downloaded from Journial of Neurology, Neurosurgery, and Psychiatry, 1973, 36, 611-617 Ependymal lined paraventricular cerebral cysts; a report of three cases D. C. BOUCH, I. MITCHELL, AND A. F. J. MALONEY From the Neuropathology Laboratory, Department ofPathology, University of Edinburgh and Milesmark Hospital, Dunfermline SUMMARY Three cases are reported, each with a benign ependymal-lined cyst which produced clinical signs and symptoms simulating cerebrovascular disease or cerebral neoplasm. The pathologi- cal features are described and their histogenesis discussed. Intracranial cysts lined by ependyma which are embolus with the main pathological features con- large enough to give rise to symptoms are rare. fined to the brain. Virtually all references to ependymal lined cysts BRAIN Macro The brain showed swelling of the in the literature relate to the colloid or para- Protected by copyright. physeal cyst of the third ventricle. right frontal lobe, flattening of the overlying gyri, and shift of the midline structures to the left. Occupy- This communication describes three cases in ing most of the central white matter of the right each of which a large cyst with watery content frontal lobe was a unilocular cyst (Fig. 1) compres- was found in the centrum semi-ovale. In no case sing, but not communicating with, the lateral ventricle could communication with the ventricular system and displacing the anterior corpus striatum down- be demonstrated. All presented with severe neuro- wards. The cyst, which measured 60 x 4-0 cm in logical signs and symptoms.
    [Show full text]
  • Targets Ependyma and Astrocytes in the Subventricular Zone and RMS
    Gene Therapy (2005) 12, 1503–1508 & 2005 Nature Publishing Group All rights reserved 0969-7128/05 $30.00 www.nature.com/gt RESEARCH ARTICLE Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS G Liu1,2, IH Martins1,2, JA Chiorini1,4 and BL Davidson1,2,3,5 1Program in Gene Therapy, University of Iowa, Iowa City, IA, USA; 2Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; 3Department of Neurology, University of Iowa, Iowa City, IA, USA; 4National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; and 5Department of Physiology & Biophysics, University of Iowa, Iowa City, IA, USA The subventricular zone (SVZ) is one of the neurogenic conducted on adult mice. AAV4 vectors show a characteristic niches in the adult mammalian brain. The SVZ is of interest transduction of the ependyma independent of delivery route. for studies on neurogenesis and stem cell therapy. Here, we However, AAV4 virus injected into the SVZ targeted GFAP report specific transduction of ependyma and/or astrocytes positive astrocytes forming the glial tube in the SVZ and by recombinant adeno-associated virus type 4 (AAV4) viral rostral migratory stream (RMS). Our results introduce AAV4 vectors. AAV4 vectors encoding b-galactosidase or eGFP as a new tool by which to manipulate glial cells in the RMS. were injected into the lateral ventricles of neonatal and adult Gene Therapy (2005) 12, 1503–1508. doi:10.1038/ C57BL/6 mouse brains. In addition, SVZ injections
    [Show full text]
  • 26 April 2010 TE Prepublication Page 1 Nomina Generalia General Terms
    26 April 2010 TE PrePublication Page 1 Nomina generalia General terms E1.0.0.0.0.0.1 Modus reproductionis Reproductive mode E1.0.0.0.0.0.2 Reproductio sexualis Sexual reproduction E1.0.0.0.0.0.3 Viviparitas Viviparity E1.0.0.0.0.0.4 Heterogamia Heterogamy E1.0.0.0.0.0.5 Endogamia Endogamy E1.0.0.0.0.0.6 Sequentia reproductionis Reproductive sequence E1.0.0.0.0.0.7 Ovulatio Ovulation E1.0.0.0.0.0.8 Erectio Erection E1.0.0.0.0.0.9 Coitus Coitus; Sexual intercourse E1.0.0.0.0.0.10 Ejaculatio1 Ejaculation E1.0.0.0.0.0.11 Emissio Emission E1.0.0.0.0.0.12 Ejaculatio vera Ejaculation proper E1.0.0.0.0.0.13 Semen Semen; Ejaculate E1.0.0.0.0.0.14 Inseminatio Insemination E1.0.0.0.0.0.15 Fertilisatio Fertilization E1.0.0.0.0.0.16 Fecundatio Fecundation; Impregnation E1.0.0.0.0.0.17 Superfecundatio Superfecundation E1.0.0.0.0.0.18 Superimpregnatio Superimpregnation E1.0.0.0.0.0.19 Superfetatio Superfetation E1.0.0.0.0.0.20 Ontogenesis Ontogeny E1.0.0.0.0.0.21 Ontogenesis praenatalis Prenatal ontogeny E1.0.0.0.0.0.22 Tempus praenatale; Tempus gestationis Prenatal period; Gestation period E1.0.0.0.0.0.23 Vita praenatalis Prenatal life E1.0.0.0.0.0.24 Vita intrauterina Intra-uterine life E1.0.0.0.0.0.25 Embryogenesis2 Embryogenesis; Embryogeny E1.0.0.0.0.0.26 Fetogenesis3 Fetogenesis E1.0.0.0.0.0.27 Tempus natale Birth period E1.0.0.0.0.0.28 Ontogenesis postnatalis Postnatal ontogeny E1.0.0.0.0.0.29 Vita postnatalis Postnatal life E1.0.1.0.0.0.1 Mensurae embryonicae et fetales4 Embryonic and fetal measurements E1.0.1.0.0.0.2 Aetas a fecundatione5 Fertilization
    [Show full text]
  • Correlated Electrophysiology and Morphology of the Ependyma in Rat Hypothalamus
    The Journal of Neuroscience, October 1988, 8(10): 3691-3702 Correlated Electrophysiology and Morphology of the Ependyma in Rat Hypothalamus C. R. Jarvisa and Ft. D. Andrew Department of Anatomy, Queen’s University, Kingston, Ontario, Canada K7L 3N6 The ependyma lines the ventricular system of the vertebrate and may therefore have similar functions. In the hypothal- brain and spinal cord. Although its embryology and mor- amus, ependyma probably take up K+ released from adja- phology have been studied extensively, little is known of its cent endocrine neurons and shunt it to the ventricular space. physiological properties, particularly in mammals. Tany- cytes are modified ependymal cells that are found predom- The ventricular system of the brain and spinal cord is lined by inantly lining the floor of the third ventricle, overlying the the ependyma, a singlelayer of squamous,cuboidal, or columnar median eminence. Their processes accompany and enwrap epithelial cells. Some ependymal cells, termed tanycytes, have neuroendocrine axons that course from hypothalamic nuclei long basal processesextending into the underlying neuropil. to terminals in the median eminence, but the significance of Tanycytes form the ependymal lining over the circumventricu- this interaction is not yet understood. Intracellular recording lar organs and are found scattered within the ependymal layer and injection techniques were used to study ependymal cells of the ventricles and spinal canal. Most cells lining the third and tanycytes of the rat in the hypothalamic slice preparation ventricle are cuboidal (common ependyma), although tanycytes after differentiating their respective regions morphologically. are clustered along the lateroventral wall and in the floor over- With extracellular [K+] = 6.24 mM, the mean membrane po- lying the median eminence.Tanycyte processesaccompany and tential (*SD) for common ependyma was -79.9 + 1.40 mV enwrap neuroendocrine axons that course from hypothalamic and for tanycytes, -79.5 f 1.77 mV.
    [Show full text]
  • Piggybac Transposon-Based Lineage Tracing to Reveal Ependymogenesis
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 5-10-2020 Piggybac Transposon-Based Lineage Tracing to Reveal Ependymogenesis Tasnuva Nuhat Shafin University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/gs_theses Recommended Citation Shafin, asnuvT a Nuhat, "Piggybac Transposon-Based Lineage Tracing to Reveal Ependymogenesis" (2020). Master's Theses. 1484. https://opencommons.uconn.edu/gs_theses/1484 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. Piggybac Transposon-Based Lineage Tracing to Reveal Ependymogenesis Tasnuva Nuhat Shafin M.B.B.S., Dhaka Medical College (Dhaka University), 2016 A Thesis Submitted in the Partial Fulfillment of the Requirement for the Degree of Masters of Science at the University of Connecticut 2020 APPROVAL PAGE Masters of Science Thesis Piggybac Transposon-Based Lineage Tracing to Reveal Ependymogenesis Presented by Tasnuva Nuhat Shafin, MBBS Major Advisor: _____________________________________ Joanne Conover, PhD Associate Advisor: ______________________________________ Joseph LoTurco, PhD Associate Advisor: ______________________________________ Anastasios Tzingounis, PhD University of Connecticut 2020 ii Acknowledgements My time at the University of Connecticut has been so valuable to me due to the support and guidance of the great people I’ve been surrounded by. My deepest gratitude to Dr. Joanne Conover for her direction, patience, and thoughtful discussion that has helped me grow and expand my skills as a scientist. I’d also like to thank my committee members, Dr.
    [Show full text]
  • Immune Surveillance in the Central Nervous System
    REVIEW FOCUS ON NEURO-IMMUNE INTERACTIONS Immune surveillance in the central nervous system Shalina S Ousman1–3 & Paul Kubes4–6 The CNS, which consists of the brain and spinal cord, is continuously monitored by resident microglia and blood-borne immune cells such as macrophages, dendritic cells and T cells to detect for damaging agents that would disrupt homeostasis and optimal functioning of these vital organs. Further, the CNS must balance between vigilantly detecting for potentially harmful factors and resolving any immunological responses that in themselves can create damage if left unabated. We discuss the physiological roles of the immune sentinels that patrol the CNS, the molecular markers that underlie their surveillance duties, and the consequences of interrupting their functions following injury and infection by viruses such as JC virus, human immunodeficiency virus, herpes simplex virus and West Nile virus. Although the CNS lacks lymphatics, displays low levels of major presentation should a florid inflammatory response be necessary2. Here, histocompatibility complex (MHC) molecules and is uniquely we summarize knowledge of how microglia and peripheral immune shielded from free diffusion of molecular and cellular components cells participate in promoting physiological balance and protection of by the blood-brain barrier (BBB) and the blood–cerebrospinal fluid the normal CNS and how interruption of immune patrol of the brain (CSF) barrier, the immune response in the brain can be impressive and spinal cord can lead to and/or augment disease and injury. if not spectacular, as is the case in meningitis. By contrast, loss of immunity is often highlighted by cerebral infections. To protect this Microglia mediate surveillance and homeostasis in the CNS vital system, the healthy brain and spinal cord are under continual Even though they share surface markers with hematogenously derived immune surveillance to detect and eliminate potential mediators of macrophages3, it has recently been shown that one subset of microglia Nature America, Inc.
    [Show full text]