Computer Architecture Prologue Topics • Computer Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Computer Architecture Prologue Topics • Computer Architecture Computer Architecture Prologue 1 Topics • Computer Architecture • Computer Organization • Organization vs. Architecture • History of Computers • Generations of Computers • M’LMoore’s Law 2 Computer Architecture (1) • Definition? • “The desigggyn of integrated system which provides a useful tool to the programmer.” (Baer) • “The study of the structure, behaviour, and design of computers.” (Hayes) • “The design of the system specification at a general or subsystem level.” (Abd-Alla) • “The art of desigggning a machine that will be a pleasure to work with.” (Foster) 3 Computer Architecture (2) • “The interface between the hardware and the lowest level software.” ((yHennessy and Patterson) • Keywords: —Design —System —Structure —Art TlTool IfInterface 4 Computer Architecture (3) • Therefore, computer architecture refers to —Attributes of a system visible to programmers —Attributes that have a direct impact on the execution of programs • Attributes —Instruction set —Data representation —I/O mechanisms —Addressing techniques 5 Computer Organization • Organization refers to operational units and their interconnections that realize the architectural specifications. • Attributes: hardware details transparent to programmers —Control signals —Computer/peripheral interface —MthlMemory technology 6 Architecture vs. Organization (1) • Architecture is attributes visible to programmers • Organization is how features are implemented • Example: —Architecture: multiply instruction? —Organization: hardware multiply unit or done by repeated addition? (how is it implemented?) • Example: —IBM/370 architecture —different models (organizations) 7 Architecture vs. Organization (2) • Family Concept —All Intel x86 family share the same basic architecture —The IBM System/370 family share the same basic architecture —This g ives cod e compatibili ty ( at l east b ack ward s) • OiidiffbOrganization differs between diff erent versi ons 8 History of Computers (1) • Pre-mechanical Era —Abacus (ancient China) • Mechanical Era (1623 – 1940s) —Wilhelm Schickhard (1623) – Automatically +, -, x, —Blaise Pascal (1642) – Mass produced first working machine (50) – Only +, - —Gottfried Liebniz (1673) – Impp(,roved on Pascal’s machine (+, -,,, x, ) 9 History of Computers (2) • Mechanical Era (cont’d) —Charles Babbagg(e (1822) – Father of modern computer – Automatic computation of math tables – Any math operation – Punch cards – Modern structure: I/O, storage, ALU – +: 1 sec. x: 1 min. —George Boole (1847) – Mathmatical analysis of logic 10 History of Computers (3) • Mechanical Era (cont’d) —Herman Hollerith (()1889) – Modern day punch card machine – Tabulating machine company b predecessor of IBM —Konard Zuse (1938) – First working mechanical computer, Z1 (later on Z2 – Z4) – First programmable computer – Binary floating point machine —Howard Aiken (1943) – Harvard Mark I, built by IBM – Implementation of Babbage’s machine 11 History of Computers (4) • Summary of Mechanical Era —Contributions – Reduce calculation time – Increase accuracy —Drawback – Speed: limited by moving parts – Cumbersome – Expensive – Unreliable • Entered the Electronic Era (1945 – present)!! 12 von Neumann/Turing • Stored Program concept • Main memoryygpg storingprograms and data • ALU operating on binary data • Control unit interpreting instructions from memory and executing • Input and output equipment operated by control unit • Princeton Institute for Advanced Studies —IAS • Completed 1952: Basis for virtually every machine designed since then 13 Structure of von Neumann machine 14 Generations of Computer • First generation: Vacuum tube - 1946-1957 • Second generation: Transistor - 1958-1964 • Third generation: Integrated circuits – 1965 – 1971 —SllliSmall scale integrati on - 1965 on – Up to 100 devices on a chip —Medium scale integration - to 1971 – 100-3,000 devices on a chip —Semiconductor memory (1970) —Microprocessor (1971) 15 Generations of Computer • Fourth generation: Large scale integration (LSI) - 1971-1977 —3,000 - 100,000 devices on a chip —Intel 8080: first general-purpose microprocessor (1974) • Fifth generation: 1978 – present —Very large scale integration (VLSI) - 1978 to date – 100,000 - 100,000,000 devices on a chip —Ultra large scale integration (ULSI) – Over 100,000,000 devices on a chip —GSI ?? 16 Moore’s Law • Increased density of components on chip • Number of transistors on a chip will double every year • Since 1970’s development has slowed a little — Number of transistors doubles every 18 months • Cost of a chip has remained almost unchanged • Higher packing density means shorter electrical paths, ggggpiving higher performance • Smaller size gives increased flexibility • Reduced power and cooling requirements • Fewer iiinterconnections increases reliability 17.
Recommended publications
  • Simulating Physics with Computers
    International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California 91107 Received May 7, 1981 1. INTRODUCTION On the program it says this is a keynote speech--and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain. The reason for doing this is something that I learned about from Ed Fredkin, and my entire interest in the subject has been inspired by him. It has to do with learning something about the possibilities of computers, and also something about possibilities in physics. If we suppose that we know all the physical laws perfectly, of course we don't have to pay any attention to computers. It's interesting anyway to entertain oneself with the idea that we've got something to learn about physical laws; and if I take a relaxed view here (after all I'm here and not at home) I'll admit that we don't understand everything.
    [Show full text]
  • History of Computing Prehistory – the World Before 1946
    Social and Professional Issues in IT Prehistory - the world before 1946 History of Computing Prehistory – the world before 1946 The word “Computing” Originally, the word computing was synonymous with counting and calculating, and a computer was a person who computes. Since the advent of the electronic computer, it has come to also mean the operation and usage of these machines, the electrical processes carried out within the computer hardware itself, and the theoretical concepts governing them. Prehistory: Computing related events 750 BC - 1799 A.D. 750 B.C. The abacus was first used by the Babylonians as an aid to simple arithmetic at sometime around this date. 1492 Leonardo da Vinci produced drawings of a device consisting of interlocking cog wheels which could be interpreted as a mechanical calculator capable of addition and subtraction. A working model inspired by this plan was built in 1968 but it remains controversial whether Leonardo really had a calculator in mind 1588 Logarithms are discovered by Joost Buerghi 1614 Scotsman John Napier invents an ingenious system of moveable rods (referred to as Napier's Rods or Napier's bones). These were based on logarithms and allowed the operator to multiply, divide and calculate square and cube roots by moving the rods around and placing them in specially constructed boards. 1622 William Oughtred developed slide rules based on John Napier's logarithms 1623 Wilhelm Schickard of Tübingen, Württemberg (now in Germany), built the first discrete automatic calculator, and thus essentially started the computer era. His device was called the "Calculating Clock". This mechanical machine was capable of adding and subtracting up to 6 digit numbers, and warned of an overflow by ringing a bell.
    [Show full text]
  • Flight Results of the Inflatesail Spacecraft and Future Applications of Dragsails
    SSC18-XI-04 FLIGHT RESULTS OF THE INFLATESAIL SPACECRAFT AND FUTURE APPLICATIONS OF DRAGSAILS B Taylor, C. Underwood, A. Viquerat, S Fellowes, R. Duke, B. Stewart, G. Aglietti, C. Bridges Surrey Space Centre, University of Surrey Guildford, GU2 7XH, United Kingdom, +44(0)1483 686278, [email protected] M. Schenk University of Bristol Bristol, Avon, BS8 1TH, United Kingdom, +44 (0)117 3315364, [email protected] C. Massimiani Surrey Satellite Technology Ltd. 20 Stephenson Rd, Guildford GU2 7YE; United Kingdom, +44 (0)1483 803803, [email protected] D. Masutti, A. Denis Von Karman Institute for Fluid Dynamics, Waterloosesteenweg 72, B-1640 Sint-Genesius-Rode, Belgium, +32 2 359 96 11, [email protected] ABSTRACT The InflateSail CubeSat, designed and built at the Surrey Space Centre (SSC) at the University of Surrey, UK, for the Von Karman Institute (VKI), Belgium, is one of the technology demonstrators for the QB50 programme. The 3.2 kilogram InflateSail is “3U” in size and is equipped with a 1 metre long inflatable boom and a 10 square metre deployable drag sail. InflateSail's primary goal is to demonstrate the effectiveness of using a drag sail in Low Earth Orbit (LEO) to dramatically increase the rate at which satellites lose altitude and re-enter the Earth's atmosphere. InflateSail was launched on Friday 23rd June 2017 into a 505km Sun-synchronous orbit. Shortly after the satellite was inserted into its orbit, the satellite booted up and automatically started its successful deployment sequence and quickly started its decent. The spacecraft exhibited varying dynamic modes, capturing in-situ attitude data throughout the mission lifetime.
    [Show full text]
  • Made in Space, We Propose an Entirely New Concept
    EXECUTIVE SUMMARY “Those who control the spice control the universe.” – Frank Herbert, Dune Many interesting ideas have been conceived for building space-based infrastructure in cislunar space. From O’Neill’s space colonies, to solar power satellite farms, and even prospecting retrieved near earth asteroids. In all the scenarios, one thing remained fixed - the need for space resources at the outpost. To satisfy this need, O’Neill suggested an electromagnetic railgun to deliver resources from the lunar surface, while NASA’s Asteroid Redirect Mission called for a solar electric tug to deliver asteroid materials from interplanetary space. At Made In Space, we propose an entirely new concept. One which is scalable, cost effective, and ensures that the abundant material wealth of the inner solar system becomes readily available to humankind in a nearly automated fashion. We propose the RAMA architecture, which turns asteroids into self-contained spacecraft capable of moving themselves back to cislunar space. The RAMA architecture is just as capable of transporting conventional sized asteroids on the 10m length scale as transporting asteroids 100m or larger, making it the most versatile asteroid retrieval architecture in terms of retrieved-mass capability. ii This report describes the results of the Phase I study funded by the NASA NIAC program for Made In Space to establish the concept feasibility of using space manufacturing to convert asteroids into autonomous, mechanical spacecraft. Project RAMA, Reconstituting Asteroids into Mechanical Automata, is designed to leverage the future advances of additive manufacturing (AM), in-situ resource utilization (ISRU) and in-situ manufacturing (ISM) to realize enormous efficiencies in repeated asteroid redirect missions.
    [Show full text]
  • Session 2020-21 (PERIODIC TEST II PORTION) Subject: COMPUTER Class : V Chapter 1: EVOLUTION of COMPUTERS Students to Read the Fo
    Session 2020-21 (PERIODIC TEST II PORTION) Subject: COMPUTER Class : V Chapter 1: EVOLUTION OF COMPUTERS DAY-1 Students to read the following topics thoroughly: Every aspect of our lives in this present era has been influenced by the most advanced machine known as computer. Initially computers were used only by scientists and engineers for complex calculations and were very expensive. Nowadays, computers can be afforded by individuals and small organizations. Computers are extensively used in banks, hospitals, media and entertainment, industries, schools, homes, space technology and research, railways, airports and so on. The term ‘Computer’ is derived from the word, ‘compute’ which means to calculate but a computer is not limited to perform only calculations. A computer is a versatile device that can handle different applications at the same time. Now, let us glance through the major milestones in the journey leading to the evolution of present day computer. ❖ HISTORY OF COMPUTERS: Right from abacus - the first counting device, many devices were invented, leading to the development of computers. ❖ COMPUTING DEVICES: 3000 BC ABACUS: ➢ Abacus was the first mechanical device for calculations, developed in China. ➢ It was made up of a wooden frame with rods, each having beads. ➢ The frame is divided into two parts – Heaven and Earth. ➢ Each rod in Heaven has 2 beads and each rod in Earth has 5 beads. ➢ This device was used for addition, subtraction, multiplication and division. ASSIGNMENT: (To be written in computer notebook, both questions & answers) Q 1. In which country was Abacus developed? Ans: Q 2. Computer has been derived from which word? Ans: DAY-2 Students to read the following topics thoroughly: PASCAL ADDING MACHINE: ➢ Pascal adding machine was the first mechanical calculator invented by Blaise Pascal, a French mathematician at the age of 19.
    [Show full text]
  • A Brief History of IT
    IT Computer Technical Support Newsletter A Brief History of IT May 23, 2016 Vol.2, No.29 TABLE OF CONTENTS Introduction........................1 Pre-mechanical..................2 Mechanical.........................3 Electro-mechanical............4 Electronic...........................5 Age of Information.............6 Since the dawn of modern computers, the rapid digitization and growth in the amount of data created, shared, and consumed has transformed society greatly. In a world that is interconnected, change happens at a startling pace. Have you ever wondered how this connected world of ours got connected in the first place? The IT Computer Technical Support 1 Newsletter is complements of Pejman Kamkarian nformation technology has been around for a long, long time. Basically as Ilong as people have been around! Humans have always been quick to adapt technologies for better and faster communication. There are 4 main ages that divide up the history of information technology but only the latest age (electronic) and some of the electromechanical age really affects us today. 1. Pre-Mechanical The earliest age of technology. It can be defined as the time between 3000 B.C. and 1450 A.D. When humans first started communicating, they would try to use language to make simple pictures – petroglyphs to tell a story, map their terrain, or keep accounts such as how many animals one owned, etc. Petroglyph in Utah This trend continued with the advent of formal language and better media such as rags, papyrus, and eventually paper. The first ever calculator – the abacus was invented in this period after the development of numbering systems. 2 | IT Computer Technical Support Newsletter 2.
    [Show full text]
  • Quantum-Mechanical Computers, If They Can Be Constructed, Will Do Things No Ordinary Computer Can Quantum-Mechanical Computers
    Quantum-mechanical computers, if they can be constructed, will do things no ordinary computer can Quantum-Mechanical Computers by Seth Lloyd very two years for the past 50, computers have become twice as fast while their components have become half as big. Circuits now contain wires and transistors that measure only one hundredth of a human hair in width. Because of this ex- Eplosive progress, today’s machines are millions of times more powerful than their crude ancestors. But explosions do eventually dissipate, and integrated-circuit technology is running up against its limits. 1 Advanced lithographic techniques can yield parts /100 the size of what is currently avail- able. But at this scale—where bulk matter reveals itself as a crowd of individual atoms— integrated circuits barely function. A tenth the size again, the individuals assert their iden- tity, and a single defect can wreak havoc. So if computers are to become much smaller in the future, new technology must replace or supplement what we now have. HYDROGEN ATOMS could be used to store bits of information in a quantum computer. An atom in its ground state, with its electron in its lowest possible en- ergy level (blue), can represent a 0; the same atom in an excited state, with its electron at a higher energy level (green), can repre- sent a 1. The atom’s bit, 0 or 1, can be flipped to the opposite value using a pulse of laser light (yellow). If the photons in the pulse have the same amount of energy as the difference between the electron’s ground state and its excited state, the electron will jump from one state to the other.
    [Show full text]
  • Mechanical Computing
    Home For Librarians Help My SpringerReference Go Advanced Search Physics and Astronomy > Encyclopedia of Complexity and Systems Science > Mechanical Computing: The Related Articles Computational Complexity of Physical Devices Unconventional Computing, Introduction to Cite | History | Comment | Print | References | Image Gallery | Hide Links Author This article represents the version submitted by the author. Dr. John H. Reif It is currently undergoing peer review prior to full publication. Dept. Comp. Sci., Duke Univ., Durham, USA and Adj. Fac. of Mechanical Computing: The Computational Complexity of Comp., KAU, Jeddah, SA, Durham, USA Physical Devices Editor Page Content [show] Dr. Robert A. Meyers RAMTECH LIMITED, Larkspur, USA Glossary Session History (max. 10) Mechanical Computing: The - Mechanism: A machine or part of a machine that performs a particular task computation: Computational Complexity of Physical the use of a computer for calculation. Devices - Computable: Capable of being worked out by calculation, especially using a computer. - Simulation: Used to denote both the modeling of a physical system by a computer as well as the modeling of the operation of a computer by a mechanical system; the difference will be clear from the context. Definition of the Subject Mechanical devices for computation appear to be largely displaced by the widespread use of microprocessor‐based computers that are pervading almost all aspects of our lives. Nevertheless, mechanical devices for computation are of interest for at least three reasons: (a) Historical: The use of mechanical devices for computation is of central importance in the historical study of technologies, with a history dating back thousands of years and with surprising applications even in relatively recent times.
    [Show full text]
  • Regulatory Requirements to the Thermal-Hydraulic and Thermal-Mechanical Computer Codes Authors: M
    Paper 4.1 Regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes Authors: M. Vitkova1, B. Kalchev2, S. Stefanova3 1 Nuclear Regulatory Agency 2 Institute of Energy 3 Institute for Nuclear Research and Nuclear Energy – Bulgarian Academy of Science Abstract The paper presents an overview of the regulatory requirements to the thermal-hydraulic and thermal-mechanical computer codes, which are used for safety assessment of the fuel design and the fuel utilization. Some requirements to the model development, verification and validation of the codes and analysis of code uncertainties are also define. Questions concerning Quality Assurance during development and implementation of the codes as well as preparation of a detailed verification and validation plan are briefly discussed. 1. Introduction Commitment by utilities to safe, reliable and economical power production is the basis for nuclear energy progress. All these goals are only achievable if the utility is able to accomplish and maintain a successful operation. At the same time the operation of the nuclear power plants are not absolutely free of risk. This requires some principles, requirements and measures for radiological protection of the personnel, the public and the environment to be formulated and adequately implemented so as the risk from the plant operation can be minimized and the society’s needs for useful energy can be met. Logical relations between safety objectives and principles for protection should be established to guarantee that the nuclear power plants can be operated safely and reliably. At the other hand the design provisions should include a multibarrier system to protect humans and the environment in a wide range of abnormal conditions.
    [Show full text]
  • Bridge Measurement Analysis
    Bridge Measurement Analysis Svetlana Avramov-Zamurovic1, Bryan Waltrip2 and Andrew Koffman2 1United States Naval Academy, Weapons and Systems Engineering Department Annapolis, MD 21402, Telephone: 410 293 6124 Email: [email protected] 2National Institute of Standards and Technology†, Electricity Division Gaithersburg, MD 21899. Telephone: 301 975 2438, Email: [email protected] Introduction At the United States Academy there are several engineering majors, including Systems Engineering. This program offers excellent systems integration education. In particular the major concentrates on control of electrical, computer and mechanical systems. In addition to several tracks, students have the opportunity to independently research a field of interest. This is a great opportunity for teachers and students to pursue more in-depth analyses. This paper will describe one such experiment in the field of metrology. Very often engineering laboratories at undergraduate schools are well equipped with power supplies, signal generators, oscilloscopes and general-purpose multimeters. This set allows teachers and students to set up test-beds for most of the basic electronics circuits studied in different engineering tracks. Modern instrumentation is in general user-friendly and students like using the equipment. However, students are often not aware that there are two pieces of information necessary to establish a measurement result: the numerical value of the measured quantity and the uncertainty with which that measurement was performed. In order to achieve high measurement accuracy, more complex measurement systems must be developed. This paper will describe the process of analyzing a bridge measurement using MATLAB‡. Measurement Bridge One of the basic circuits that demonstrate the concept of a current/voltage divider is a Wheatstone bridge (given in Figure 1.) A source voltage is applied to a parallel connection of impedances.
    [Show full text]
  • Mechanical Tic-Tac-Toe Board
    Mechanical Tic-Tac-Toe Board A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfilment of the requirements for the Degree of Bachelor of Science. By: Shane Bell Timothy Bill Abigail McAdams Taylor Teed Spring 2018 Submitted to: Professor Robert Daniello Mechanical Engineering Department 1 Abstract The goal of this MQP was to design, test and build a fully mechanical computer capable of playing tic-tac-toe against a human being. There is no question that modern computers could solve this problem more efficiently. However, our team aims to prove that old school technology still has a place in society today. Our design includes numerous methods of mechanical motion that are found in many designs today such as an escapement, gears, racks and pinions, and hydraulics. The machine was built almost entirely in the Higgins machine shop, except for a couple parts that were either cut with a water-jet or purchased. Our design uses an indexing module to detect position and data stored on a physical punch card to produce the best strategic answer. If the user makes the first move, the computer will never lose, only win or tie. 2 Acknowledgements Our group would like that thank our advisor Robert Daniello for his guidance and support throughout the duration of our project, Thomas Kouttron and Michael Cooke for their positive attitudes and constant aid in manufacturing, and Dane Kouttron for allowing access to machines not available within WPI facilities. We would also like to thank James Loiselle, Ian Anderson, Karl Ehlers, and Cam Collins for their good hearted aid, teaching our team the ins and outs of computer aided manufacturing and helping to figure out machining problems that we could not.
    [Show full text]
  • Konrad Zuse the Computer- My Life
    Konrad Zuse The Computer- My Life Konrad Zuse The Computer- My Life With Forewords byEL.Bauer and H. Zemanek Springer-Verlag Berlin Heidelberg GmbH Professor Dr. Ing. E. h. Dr. mult. rer. nat. h.c. Konrad Zuse 1m Haselgrund 21, D-36088 Hunfeld, Germany Editor: Dr. Hans Wossner, Springer-Verlag Heidelberg Translators: Patricia McKenna, New York J.Andrew Ross, Springer-Verlag Heidelberg Titl e of the original German edition: Der Computer - Mein Lebenswerk, 1993 © Springer-Verlag Berlin Heidelberg 1984, 1986, 1990, 1993 Computing Reviews Classification (1991) : K. 2, A. 0 With 68 Figures ISBN 978-3-642-08 151 -4 ISBN 978-3-662-02931-2 (eBook) DOI 10.1007/978-3-662-02931-2 Libary of Congress Cataloging-in-Publication Data . Zuse, Konr ad . (Computer. mein Lebensw erk . English) Th e computer, my life / Konrad Zuse;with for eword s bv F.L. Bauer and H. Zemanek. p. cm. Includes bibliographical references and index. I. Zuse, Konrad. 2. Computers -Germany - History . 3. Computer engineers - Germany - Biography. I. Titl e. TK7885.22.Z87A3 1993 62I.39'092-dc20 [B] 93-18574 This work is subject to copyright. All rights are reserved , whether the whole world or part for the mat erial is concerned , specifically the rights of translation, reprinting, reuse ofillustrati- ons, recitation, broadcasting , reproduction on microfilm or in any ot her way, and storage in data banks. Dupli cation of this publication or parts thereof is permitted only under the pro- visions of German Copyr ight Law of September 9, 1965, in its current version , and permissi- on for use must always be obtained from Springer-Verlag.
    [Show full text]