Multi-Residue Analysis of 210 Pesticides in Food Samples by Triple Quadrupole UHPLC-MS/MS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pesticide Residues in Food 2007 – Report, 2007 (E)
FAO Pesticide residues PLANT PRODUCTION in food 2007 AND PROTECTION PAPER Joint FAO/WHO Meeting on Pesticide Residues 191 Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Geneva, Switzerland, 18–27 September 2007 WORLD HEALTH ORGANIZATION FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2007 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. ISBN 978-92-5-105918-0 All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to: Chief Electronic -
Routine Multipesticide Analysis Orbitrap
Routine Multi-Pesticide Residue Analysis by Orbitrap MS Technology Osama Abu-Nimreh CMD Sales Support Specialist MECEC , Dubai The world leader in serving science Challenges of Pesticide-Residues Analysis • Sample variability (matrix) • Different compound characteristics • Large number of samples • Hundreds of analytes monitored • Low levels controlled • Baby food (MRL for all pesticides = 0.01 mg/kg) • Fast response required 2 Former Pesticide Multi-Residue Method Setup . Extraction Acetonitrile, Ethyl Mostly replaced acetate, Methanol... by QuEChERS today . Clean-up GPC, SPE, LLE, LC . Determination GC, LC, GC-MS, LC-MS, Thermo Scientific™ QuEChERS™ GC-MS/MS, LC-MS/MS... method 3 Simplified Extraction Procedure Applied 10 g of sample is weighed into Quechers extraction tube + 20 mL of water + 10 mL of ACN shaking 10 min Centrifugation 5 min @ 5000 rpm Injection to LC-HRAM 4 Consumables Used Consumables/Chemicals Part Number Acetonitrile A/0638/17 QuEChERS extraction tube, 50 mL, 250 pack 60105-216 QuEChERS pouches, 50 pack 60105-344 Apparatus/Columns Part Number Horizontal shaker 1069-3391 Horizontal shaker plate 1053-0102 Thermo Scientific™ Barnstead™ EASYpure™II water 3125753 Thermo Scientific™ Heraeus™ Fresco™ 17 micro centrifuge 3208590 Thermo Scientific™ Accucore™ aQ column 100x2.1, 2.6 µm 17326-102130 5 Improving QuEChERS Extraction Tips & Tricks: • Dry food (cereals/dried food, < 25 % water content): • Addition of water to enable adequate partitioning and reducing interaction of pesticides with matrix • Food containing fat/wax (avocado/oil): • After extraction step add a freezing out step and transfer supernatant to clean-up tube • More clean-up might be needed of raw extract (PSA+C18) • Food containing complex matrix (tea/spices) • Additional clean-up with GCB might be necessary (potential loss of planar structure pesticides like thiabendazole) • Acidic food (citrus): • Adjust pH (5-5.5) to increase recovery (e.g. -
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
40 CFR Ch. I (7–1–18 Edition) § 455.61
§ 455.61 40 CFR Ch. I (7–1–18 Edition) from: the operation of employee show- § 455.64 Effluent limitations guidelines ers and laundry facilities; the testing representing the degree of effluent of fire protection equipment; the test- reduction attainable by the applica- ing and emergency operation of safety tion of the best available tech- showers and eye washes; or storm nology economically achievable water. (BAT). (d) The provisions of this subpart do Except as provided in 40 CFR 125.30 not apply to wastewater discharges through 125.32, any existing point from the repackaging of microorga- source subject to this subpart must nisms or Group 1 Mixtures, as defined achieve effluent limitations rep- under § 455.10, or non-agricultural pes- resenting the degree of effluent reduc- ticide products. tion attainable by the application of the best available technology economi- § 455.61 Special definitions. cally achievable: There shall be no dis- Process wastewater, for this subpart, charge of process wastewater pollut- means all wastewater except for sani- ants. tary water and those wastewaters ex- § 455.65 New source performance cluded from the applicability of the standards (NSPS). rule in § 455.60. Any new source subject to this sub- § 455.62 Effluent limitations guidelines part which discharges process waste- representing the degree of effluent water pollutants must meet the fol- reduction attainable by the applica- lowing standards: There shall be no dis- tion of the best practicable pollut- charge of process wastewater pollut- ant control technology (BPT). ants. Except as provided in 40 CFR 125.30 through 125.32, any existing point § 455.66 Pretreatment standards for existing sources (PSES). -
4. Chemical and Physical Information
PYRETHRINS AND PYRETHROIDS 131 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY The naturally-occurring pyrethrins, extracted from chrysanthemum flowers, are esters of chrysanthemic acid (Pyrethrin I, Cinerin I, and Jasmolin I) and esters of pyrethric acid (Pyrethrin II, Cinerin II, and Jasmolin II). In the United States, the pyrethrum extract is standardized as 45–55% w/w total pyrethrins. The typical proportion of Pyrethrins I to II is 0.2:2.8, while the ratio of pyrethrins:cinerins:jasmolins is 71:21:7 (Tomlin 1997). Information regarding the chemical identity of the pyrethrins is presented in Table 4-1. Pyrethroids are synthetic esters derived from the naturally-occurring pyrethrins. One exception to the axiom that all pyrethroids are esters of carboxylic acids is noteworthy. There is a group of oxime ethers that exhibits insecticidal activity similar in nature to the pyrethrins and pyrethroid esters (Davies 1985). Little data exist regarding these compounds, and no commercial products have been produced. Commercially available pyrethroids include allethrin, bifenthrin, bioresmethrin, cyfluthrin, cyhalothrin, cypermethrin, deltamethrin, esfenvalerate (fenvalerate), flucythrinate, flumethrin, fluvalinate, fenpropathrin, permethrin, phenothrin, resmethrin, tefluthrin, tetramethrin, and tralomethrin. Information regarding the chemical identity of pyrethroids is shown in Table 4-2. With the exception of deltamethrin, pyrethroids are a complex mixture of isomers rather than one single pure compound. For pyrethroids possessing the cyclopropane moiety, isomerism about the cyclopropane ring greatly influences the toxicity of these insecticides. The presence of two chiral centers in the ring results in two pairs of diastereomers. The diastereomers and their nonsuperimposable mirror images (enantiomers) are illustrated in Figure 4-1. -
Quantitative Determination of Pyrethroids, Pyrethrins, and Piperonyl Butoxide in Surface Water by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry
J. Agric. Food Chem. 2006, 54, 6957−6962 6957 Quantitative Determination of Pyrethroids, Pyrethrins, and Piperonyl Butoxide in Surface Water by High-Resolution Gas Chromatography/High-Resolution Mass Spectrometry MILLION BEKELE WOUDNEH* AXYS Analytical Services Ltd., 2045 Mills Road West, Sidney, British Columbia V8L 3S8, Canada DANIEL RAY OROS San Francisco Estuary Institute, 7770 Pardee Lane, 2nd Floor, Oakland, California 94621 A new method for determination of pyrethroids, pyrethrins, and piperonyl butoxide (PBO) by high- resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) was developed for surface water samples. The method is based on sampling 100 L of ambient surface water with a solid phase extraction (SPE) technique that uses both wound glass fiber filters for collecting the particulate-associated chemicals and XAD-2 resin for collecting the dissolved chemicals. The method detection limits of the analytes ranged from 0.58 to 8.16 ng/sample, which is equivalent to a detection limit range of 0.0058-0.082 ng/L for a 100 L water sample collected by the SPE technique. The SPE when coupled with HRGC/HRMS was a suitable match for detecting these chemicals at subnanogram per liter ranges that are toxicologically significant to aquatic organisms. To confirm the utility of this method for environmental applications, pyrethroids and PBO were found at subnanogram per liter concentrations in surface water samples collected from five tributaries (primarily urban creeks) of the San Francisco Bay, California. KEYWORDS: Pyrethroids; pesticides; XAD-2; HRGC/HRMS; San Francisco Bay INTRODUCTION by inhibiting a group of enzymes (mixed-function oxidases) that are involved in pyrethroid detoxification, which as a result The decision of the U.S. -
EWG VERIFIED™ Products Cannot Contain Any of the Ingredients Outlined in This Document
EWG’S UNACCEPTABLE LIST: Baby Diapers EWG VERIFIED™ products cannot contain any of the ingredients outlined in this document. Appendix A. Substances prohibited inEWG VERIFIED diapers based on GHS hazard classifications. A = aquatic toxicity, C = carcinogenicity, D = reproductive toxicity (development), F = reproductive toxicity (fertility), L = reproductive toxicity (lactation [breast-feeding children]), M = mutagenic, Sr = sensitization (respiratory), Ss =sensitization (skin) Chemical name(s) EC Number(s) CAS Number(s) Hazards ((4-phenylbutyl)hydroxyphosphoryl)acetic acid 412-170-7 83623-61-4 Ss (-)(3S,4R)-4-(4-fluorophenyl)-3-(3,4-methylenedioxy-phenoxymethyl)-N-benzylpiperidine hydrochloride 432-360-3 105813-13-6 SsA (+)-(1S,2S,3S,5R)-2,6,6-trimethylbicyclo[3.1.1]heptane-3-spiro-1'-(cyclohex-2'-en-4'-one) 430-460-1 133636-82-5 SsA (+/-)-(R*,R*)-6-fluoro-3,4-dihydro-2-oxiranyl-2H-1-benzopyran; 6-fluoro-2-(2-oxiranyl)chromane 419-620-1 - Ss (±) trans-3,3-dimethyl-5-(2,2,3-trimethyl-cyclopent-3-en-1-yl)-pent-4-en-2-ol 411-580-3 107898-54-4 A (±)-[(R*,R*) and (R*,S*)]-6-fluoro-3,4-dihydro-2-oxiranyl-2H-1-benzopyran 419-600-2 99199-90-3 Ss (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolin 430-730-9 - A (±)-4-[2-[[3-(4-hydroxyphenyl)-1-methylpropyl]amino]-1-hydroxyethyl]phenol hydrochloride 415-170-5 90274-24-1 Ss (±)-α-[(2-acetyl-5-methylphenyl)-amino]-2,6-dichlorobenzene-aceto-nitrile 419-290-9 Ss (1,3,4,5,6,7-hexahydro-1,3-di-oxo-2H-isoindol-2-yl)methyl (1R-trans)-2,2-dimethyl-3-(2-methylprop-1- -
Environmental Health Criteria 87 Allethrins
Environmental Health Criteria 87 Allethrins Please note that the layout and pagination of this web version are not identical with the printed version. Allethrins (EHC 87, 1989) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 87 ALLETHRINS - Allethrin - d-Allethrin - Bioallethrin - S-Bioallethrin This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1989 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination of laboratory testing and epidemiological studies, and promotion of research on the mechanisms of the biological action of chemicals. ISBN 92 4 154287 X The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations Page 1 of 46 Allethrins (EHC 87, 1989) already available. -
(12) United States Patent (10) Patent No.: US 6,528,079 B2 Podszun Et Al
US006528079B2 (12) United States Patent (10) Patent No.: US 6,528,079 B2 PodsZun et al. (45) Date of Patent: *Mar. 4, 2003 (54) SHAPED BODIES WHICH RELEASE 4,845,106 A 7/1989 Shiokawa et al. .......... 514/342 AGROCHEMICALACTIVE SUBSTANCES 4,849,432 A 7/1989 Shiokawa et al. .......... 514/341 4.882,344 A 11/1989 Shiokawa et al. .......... 514/342 (75) Inventors: Wolfgang Podszun, Köln (DE); Uwe 4.914,113 A 4/1990 Shiokawa et al. .......... 514/333 Priesnitz, Solingen (DE); Jirgen 4,918,086 A 4/1990 Gsell .......................... 514/351 4,918,088 A 4/1990 Gsell .......................... 514/357 Hölters, Leverkusen (DE); Bodo 4.948.798.2- Y - A 8/1990 Gsell .......................... 514/275 Rehbold, Köln (DE); Rafel Israels, 4,963,572 A 10/1990 Gsell .......................... 514/357 Monheim (DE) 4,963,574. A 10/1990 Bachmann et al. ......... 514/357 4,988,712 A 1/1991 Shiokawa et al. .......... 514/340 (73) Assignee: Bayer Aktiengesellschaft, Leverkusen 5,001,138 A 3/1991 Shiokawa et al. .......... 514/342 (DE) 5,034.404 A 7/1991. Uneme et al. .............. 514/365 5,034,524 A 7/1991 Shiokawa et al. .......... 544/124 (*) Notice: This patent issued on a continued pros- 5,039,686 A 8/1991 Davies et al. ............... 514/341 ecution application filed under 37 CFR 5,049,571. A 9/1991 Gsell .......................... 514/345 1.53(d), and is subject to the twenty year SE A :1: S. - - - - - - - -tal.5 E.s pass" provisions of 35 U.S.C. 5,166,1642Y- - - 2 A 11/1992 NanjoOKaWa et al. -
Determination of Butocarboxim Residue in Agricultural Products by HPLC with Post-Column Derivatization System
Journal of Food and Drug Analysis 1999. 7(4) : 269-277 Determination of Butocarboxim Residue in Agricultural Products by HPLC with Post-Column Derivatization System SU-HSIANG TSENG*, PI-CHIOU CHANG AND SHIN-SHOU CHOU A method using high performance liquid chromatography (HPLC) for the determination of butocarboxim in agricultural products was developed. Butocarboxim was extracted from samples with acetone and the extract solution was concentrated. The residue was dissolved in sodium chloride solution and partitioned with n-hexane. The aqueous phase was collected fol- lowed by extracted with dichloromethane, which was then evaporated to a volume of 2 mL prior to passing through an aminopropyl cartridge for sample clean-up. Determination of butocarboxim residue in crops was carried out by HPLC equipped with a post-column deriva- tization system and a fluorescence detector. HPLC separation was performed on a Lichrospher 60 RP-Select B column eluted with a mobile phase of acetonitrile-water (25:75, v/v). Butocarboxim was hydrolyzed at 90°C under alkaline conditions and subsequently react- ed with o-phthaldialdehyde (OPA) / 2-mercaptoethanol reagent via a post-column reactor to generate a fluorophore, which was then detected with a fluorescence detector at Ex 340 nm and Em 455 nm. Average recoveries from radishes and bamboo sprouts, which were spiked with 0.1~0.3 and 0.2 ppm butocarboxim, respectively, were in the range of 81.9~82.6%. The detection limit was 0.05 ppm. No butocarboxim residue was detected in 10 commercial prod- ucts including radishes, carrots, and bamboo sprouts. Key words: agricultural products, butocarboxim, aminopropyl cartridge, high performance liquid chromatography (HPLC), post-column derivatization system, fluorescence detection. -
Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved. -
IMDG Code (Amendment 37-14) Index Korean Register of Shipping
IMDG Code (Amendment 37-14) Index Substance, material or article MP Class UN No. ACETAL - 3 1088 ACETALDEHYDE - 3 1089 ACETALDEHYDE AMMONIA - 9 1841 Acetaldehyde diethyl acetal, see - 3 1088 ACETALDEHYDE OXIME - 3 2332 Acetaldol, see - 6.1 2839 beta-Acetaldoxime, see - 3 2332 ACETIC ACID, GLACIAL - 8 2789 ACETIC ACID SOLUTION more than 10% and less than 50% acid, - 8 2790 by mass ACETIC ACID SOLUTION not less than 50% but no more than 80% - 8 2790 acid, by mass ACETIC ACID SOLUTION more than 80% acid, by mass - 8 2789 Acetic aldehyde, see - 3 1089 ACETIC ANHYDRIDE - 8 1715 Acetic oxide, see - 8 1715 Acetoin, see - 3 2621 ACETONE - 3 1090 ACETONE CYANOHYDRIN, STABILIZED P 6.1 1541 Acetone hexafluoride, see - 2.3 2420 ACETONE OILS - 3 1091 Acetone-pyrogallol copolymer 2-diazo-1-naphthol-5-sulphonate - 4.1 3228 ACETONITRILE - 3 1648 3-Acetoxypropene, see - 3 2333 Acetylacetone, see - 3 2310 Acetyl acetone peroxide (concentration ≤32%, as a paste), see - 5.2 3106 Acetyl acetone peroxide (concentration ≤42%, with diluent Type A, and - 5.2 3105 water, available oxygen ≤4.7%), see ACETYL BROMIDE - 8 1716 ACETYL CHLORIDE - 3 1717 Acetyl cyclohexanesulphonyl peroxide - 5.2 3115 (concentration ≤32%, with diluent Type B), see Acetyl cyclohexanesulphonyl peroxide - 5.2 3112 (concentration ≤82%, with water), see Acetylene dichloride, see - 3 1150 ACETYLENE, DISSOLVED - 2.1 1001 Acetylene, ethylene and propylene mixtures, refrigerated liquid, see - 2.1 3138 ACETYLENE, SOLVENT FREE - 2.1 3374 Acetylene tetrabromide, see P 6.1 2504 Acetylene tetrachloride, see P 6.1 1702 ACETYL IODIDE - 8 1898 Acetyl ketene, stabilized, see - 6.1 2521 ACETYL METHYL CARBINOL - 3 2621 Acid butyl phosphate, see - 8 1718 Acid mixture, hydrofluoric and sulphuric, see - 8 1786 Acid mixture, nitrating acid, see - 8 1796 Korean Register of Shipping IMDG Code (Amendment 37-14) Index Substance, material or article MP Class UN No.