Draft Screening Assessment Is Based Are Summarized Below

Total Page:16

File Type:pdf, Size:1020Kb

Draft Screening Assessment Is Based Are Summarized Below Final Screening Assessment Petroleum Sector Stream Approach Low Boiling Point Naphthas [Industry-Restricted] Chemical Abstracts Service Registry Numbers 64741-42-0 64741-69-1 64741-78-2 Environment Canada Health Canada July 2013 Final Screening Assessment Industry-Restricted Low Boiling Point Naphthas Synopsis The Ministers of the Environment and of Health have conducted a screening assessment of the following industry-restricted low boiling point naphthas (LBPNs): CAS RNa DSLb name 64741-42-0 Naphtha (petroleum), full-range straight-run 64741-69-1 Naphtha (petroleum), light hydrocracked 64741-78-2 Naphtha (petroleum), heavy hydrocracked a The Chemical Abstracts Service Registry Number (CAS RN) is the property of the American Chemical Society, and any use or redistribution, except as required in supporting regulatory requirements and/or for reports to the government when the information and the reports are required by law or administrative policy, is not permitted without the prior written permission of the American Chemical Society. b DSL, Domestic Substances List. These substances were identified as high priorities for action during the categorization of substances on the Domestic Substances List (DSL) as they were determined to present greatest potential or intermediate potential for exposure of individuals in Canada, and were considered to present a high hazard to human health. These substances met the ecological categorization criteria for persistence or bioaccumulation potential and inherent toxicity to aquatic organisms. These substances were included in the Petroleum Sector Stream Approach (PSSA) because they are related to the petroleum sector and are considered to be of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs). These LBPNs are complex combinations of petroleum hydrocarbons that serve as blending constituents in final gasoline products, as intermediate products of distillation or as residues derived from distillation or extraction units. The final fuel products usually consist of a combination of LBPNs, as well as high-quality hydrocarbons that have been produced from refinery or upgrader facilities. In order to predict the overall behaviour of these complex substances for the purposes of assessing the potential for ecological effects, representative structures have been selected from each chemical class in the substances. The LBPNs considered in this screening assessment (CAS RNs 64741-42-0, 64741-69-1 and 64741-78-2) have been identified as industry restricted (i.e., they are a subset of LBPNs that may leave a petroleum sector facility and be transported to other industrial facilities). According to information submitted under section 71 of the Canadian Environmental Protection Act, 1999 (CEPA 1999) and other sources of information, these LBPNs are transported from petroleum sector facilities to other industrial facilities by ship and truck. Based on results of comparison of levels expected to cause harm to organisms with estimated exposure levels, releases to soil from loading, unloading and transport may cause harm to terrestrial organisms. However, given the conditions of such releases and the overall low frequency of spills to land, the risk of harm to the environment from these spills is low. As well, there is a low risk of harm to terrestrial organisms from releases of Final Screening Assessment Industry-Restricted Low Boiling Point Naphthas LBPNs to air from ship and truck loading. As there were no recorded spills to marine waters during transport, these LBPNs have a low risk of harm to aquatic organisms. Based on the information presented in this screening assessment on the frequency and magnitude of spills, there is low risk of harm to organisms or the broader integrity of the environment from these substances. It is concluded that the three industry-restricted LBPNs (CAS RNs 64741-42-0, 64741-69-1 and 64741-78-2) do not meet the criteria under paragraph 64(a) or 64(b) of the Canadian Environmental Protection Act, 1999 (CEPA 1999) as they are not entering the environment in a quantity or concentration or under conditions that have or may have an immediate or long-term harmful effect on the environment or its biological diversity or that constitute or may constitute a danger to the environment on which life depends. A critical effect for the initial categorization of industry-restricted LBPNs was carcinogenicity, based primarily on classifications by international agencies. Additionally, benzene, a component of LBPNs, has been identified by Health Canada and several international regulatory agencies as a carcinogen. In addition to LBPN-specific data, benzene was selected as a high-hazard component of LBPNs to characterize potential exposure and risk to the general population from evaporative emissions of LBPNs. Several studies also confirmed skin tumour development in mice following repeated dermal application of LBPNs. LBPNs demonstrated limited evidence of genotoxicity in in vivo and in vitro assays, as well as limited potential to adversely affect reproduction and development. Information on additional LBPNs in the PSSA that are similar from a processing and a physical-chemical perspective was considered for characterization of human health effects. The physical-chemical properties of LBPNs indicate that these substances contain highly volatile components. Potential exposure to the industry-restricted LBPNs for individuals in proximity to shipping and trucking corridors results primarily from inhalation of vapours in ambient air due to evaporative emissions during transportation. The margins between the upper-bounding estimates of exposure to maximum air concentrations of total volatile organic compounds (VOCs) or benzene, based on the aromatic fraction of the LBPNs, and the critical inhalation effect levels are considered to be conservative and adequately protective to account for uncertainties related to health effects and exposure. General population exposure to industry-restricted LBPNs via the dermal and oral routes is not expected; therefore, risk to human health from the industry-restricted LBPNs via these routes is not expected. Based on information presented in this screening assessment, it is concluded that the industry-restricted LBPNs (CAS RNs 64741-42-0, 64741-69-1 and 64741-78-2) do not meet the criteria under paragraph 64(c) of the Canadian Environmental Protection Act, 1999 (CEPA 1999) as they are not entering the environment in a quantity or concentration or under conditions that constitute or may constitute a danger in Canada to human life or health. 3 Final Screening Assessment Industry-Restricted Low Boiling Point Naphthas It is therefore concluded that the three industry-restricted LBPNs listed under CAS RNs 64741-42-0, 64741-69-1 and 64741-78-2 do not meet any of the criteria set out in section 64 of CEPA 1999. 4 Final Screening Assessment Industry-Restricted Low Boiling Point Naphthas Introduction The Canadian Environmental Protection Act, 1999 (CEPA 1999) (Canada 1999) requires the Minister of the Environment and the Minister of Health to conduct screening assessments of substances that have met the categorization criteria set out in the Act to determine whether these substances present or may present a risk to the environment or to human health. Based on the information obtained through the categorization process, the Ministers identified a number of substances as high priorities for action. These include substances that • met all of the ecological categorization criteria, including persistence (P), bioaccumulation potential (B) and inherent toxicity to aquatic organisms (iT), and were believed to be in commerce in Canada; and/or • met the categorization criteria for greatest potential for exposure (GPE) or intermediate potential for exposure (IPE) and had been identified as posing a high hazard to human health based on classifications by other national or international agencies for carcinogenicity, genotoxicity, developmental toxicity or reproductive toxicity. A key element of the Government of Canada’s Chemicals Management Plan is the Petroleum Sector Stream Approach (PSSA), which involves the assessment of approximately 160 petroleum substances that are considered high priorities for action. These substances are primarily related to the petroleum sector and are considered to be of Unknown or Variable composition, Complex reaction products or Biological materials (UVCBs). Screening assessments focus on information critical to determining whether a substance meets the criteria set out in section 64 of CEPA 1999. Screening assessments examine scientific information and develop conclusions by incorporating a weight-of-evidence approach and precaution.1 Grouping of Petroleum Substances The high priority petroleum substances fall into nine groups of substances (Table A1.1 in Appendix 1) based on similarities in production, toxicity and physical-chemical 1 A determination of whether one or more of the criteria of section 64 are met is based upon an assessment of potential risks to the environment and/or to human health associated with exposures in the general environment. For humans, this includes, but is not limited to, exposures from ambient and indoor air, drinking water, foodstuffs and the use of consumer products. A conclusion under CEPA 1999 on the petroleum substances in the Chemicals Management Plan is not relevant to, nor does it preclude, an assessment against the hazard criteria specified in the Controlled Products
Recommended publications
  • Technical/Application Article 02 Version 1.10 22Nd January 2018 WRH/FD
    Technical/Application Article 02 Version 1.10 22nd January 2018 WRH/FD Ion Science PID Response Factors PID Response Photoionisation Detectors (PIDs) respond to a broad range of organic and a few inorganic gaseous and volatile chemicals (‘volatiles’). In order for PID to respond to a volatile, the photon energy of the lamp must be greater than its ionisation energy (IE). Ion Science PIDs are available with lamps emitting light of maximum energy of 10.0 eV, 10.6 eV, and 11.7 eV. This Technical Article lists the response factors (‘RF’s’) for over 900 volatiles with PID incorporating these lamps. The RF relates the sensitivity of PID to a volatile to the sensitivity to the standard calibration gas isobutylene. The higher the RF, the lower the sensitivity. Isobutylene as Reference Gas Ideally, the PID response to a chemical volatile would be calibrated by using a low concentration of the chemical in air. However, this is often not practical. Isobutylene is then used to calibrate PID, and a Response Factor (RF) used to convert the isobutylene calibrated measurement to a measurement of the target volatile: Concentration of target chemical = isobutylene calibrated measurement x RF For example, the RF of anisole is 0.59 with a 10.6 eV lamp. Therefore, a reading of 10 ppm using an isobutylene-calibrated unit would indicate: Concentration of anisole = 10 ppm x 0.59 = 5.9 ppm In Ion Science detectors, RFs are pre-programmed into a compound library and can be called up to make the PID read out in units of the chemical of interest.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Fullerene-Acene Chemistry
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2007 Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene Andreas John Athans University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Athans, Andreas John, "Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene" (2007). Doctoral Dissertations. 363. https://scholars.unh.edu/dissertation/363 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. FULLERENE-ACENE CHEMISTRY: PART I: STUDIES ON THE REGIOSELECTIVE REDUCTION OF ACENES AND ACENE QUINONES; PART II: PROGRESS TOWARD THE SYNTHESIS OF LARGE ACENES AND THEIR DIELS- ALDER CHEMISTRY WITH [60]FULLERENE VOLUME 1 CHAPTERS 1-5 BY ANDREAS JOHN ATHANS B.S. University of New Hampshire, 2001 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy m Chemistry May, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3 2 6 0 5 8 6 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Hydrogenation of 2-Methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Fall 12-2020 Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts Matthew J. Kline University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Catalysis and Reaction Engineering Commons, and the Petroleum Engineering Commons Recommended Citation Kline, Matthew J., "Hydrogenation of 2-methylnaphthalene in a Trickle Bed Reactor Over Bifunctional Nickel Catalysts" (2020). Electronic Theses and Dissertations. 3284. https://digitalcommons.library.umaine.edu/etd/3284 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HYDROGENATION OF 2-METHYLNAPHTHALENE IN A TRICKLE BED REACTOR OVER BIFUNCTIONAL NICKEL CATALYSTS By Matthew J. Kline B.S. Seton Hill University, 2018 A THESIS Submitted in Partial Fulfillment of the Requirements For the Degree of Master oF Science (in Chemical Engineering) The Graduate School The University of Maine December 2020 Advisory Committee: M. Clayton Wheeler, Professor of Chemical Engineering, Advisor Thomas J. Schwartz, Assistant ProFessor oF Chemical Engineering William J. DeSisto, ProFessor oF Chemical Engineering Brian G. Frederick, ProFessor oF Chemistry
    [Show full text]
  • Polypropylene Chemical Resistance Guide Chemical Listing & Ratings
    Polypropylene Chemical Resistance Guide Chemical Listing & Ratings hmcpolymers.com POLYPROPYLENE CHEMICAL RESISTANCE About HMC Polymers HMC Polymers is focused on being PP chemical resistance Asia’s number ONE in PP. HMC Polymers’ polypropylene resins, like most HMC PP resins are appreciably affected Some reduction in tensile strength and an polyolens, are highly resistant to solvents and by chlorosulfonic acid and oleum at increase in exibility and elongation-to-break We work in close cooperation with chemicals. room temperature, 98% sulfuric acid, 30% in tension can be expected, depending on our customers to improve existing hydrochloric acid, and 30% hydrogen peroxide the nature and amount of the organic The results of extensive laboratory and actual at 100°C (212°F). They are also affected by 98% medium absorbed. products and develop new resins eld installation tests of polypropylene’s sulfuric acid at 60°C (140°F) and fuming nitric for the rapidly changing markets we chemical resistance are reported in this HMC PP resins have excellent resistance acid and liquid bromine at room temperatures. serve. The company offers a wide downloadable PDF which is periodically to environmental stress-cracking. When Under strain, failure could occur with strong updated. they are tested according to ASTM D1693 range of products suitable for all oxidizing acids at temperatures lower than the brittle fractures that occur with certain major applications and processes, The chemical resistance data presented in this those mentioned. With few exceptions polyethylenes in contact with polar PDF for a range of over 260 chemicals and however, inorganic chemicals produce little or as well as innovative new products organic liquids, detergents, and silicone substances is based on ASTM D543.
    [Show full text]
  • Tetralin/Decalin
    119-64-2/91-17-8 Tetralin/Decalin SUMMARY OF DATA FOR CHEMICAL SELECTION In 1984, the TSCA Interagency Testing Committee (lTC) reviewed the information available on Tetralin (CRCS, Inc., 1984). Since that time, new data have become available and these are included in the summary sheet. CHEMICAL IDENTIFICATION CAS Registry Number: 119-64-2 Chemical Abstracts Name: Naphthalene, 1,2,3,4-tetrahydro- (9 CI) Synonyms and Trade Names: Benzocyclohexane; naphthalen-1,2,3,4-tetrahydride; 1,2,3,4-tetrahydronaphthalin; delta(sup 5,7 ,9)-naphthalene; naphthalene 1,2,3,4-tetrahydride; tetrahydronaphthalene; tetraline; Tetralin CAS Registry Number: 91-17-8 Chemical Abstracts Name: Decahydronaphthalene (8 CI, 9 CI) Synonyms and Trade Names: Bicyc1o[4.4.0] decane; Dec; Dekalin; naphthalane; napthan; naphthane; perhydronaphthalene; UN 1147; Decalin Structure. Molecular Formula and Molecular Weight Tetralin Mol. wt.: 132.2 Decal in Mol. wt.: 138.2 1 Prepared for NCI by Technical Resources, Inc. under Contract No. N01-CP-56019 (9/91; revised 2/92) 1 119-64-2/91-17-8 Tetralin/Decalin Chemical and Physical Prooerties: From Budavari (1989) unless otherwise noted. Tetralin Description: Liquid with odor resembling that of a mixture of benzene and menthol Boiling Point: 207.2° C Melting Point: -31 o C Solubility: Insoluble in water; soluble in methanol at 50.6% wtjwt and aniline; very soluble in ether; miscible with petroleum ether, chloroform, and Decalin, ethanol, butanol, acetone and benzene StabilitY: Prolonged, intimate contact with air may cause the formation
    [Show full text]
  • EPDM & FKM Chemical Resistance Guide
    EPDM & FKM Chemical Resistance Guide FIRST EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 1st Edition © 2019 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations.
    [Show full text]
  • TR-561: Tetralin (CASRN 119-64-2) in F344/N Rats and B6C3F1 Mice
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF TETRALIN (CAS NO. 119-64-2) IN F344/N RATS AND B6C3F1 MICE AND A TOXICOLOGY STUDY OF TETRALIN IN MALE NBR RATS (INHALATION STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 April 2011 NTP TR 561 NIH Publication No. 11-5902 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice).
    [Show full text]
  • I Application of Hansen Solubility Parameters in Fabrication
    Application of Hansen Solubility Parameters in Fabrication of Molecularly Im- printed Polymers for Detection of PAHs from Water Samples By Maryam Jafari A thesis submitted to the School of Graduate Studies in partial fulfillment of the require- ments for the degree of Master of Science Department of Chemistry Memorial University of Newfoundland and Labrador July 2018 St. John’s Newfoundland and Labrador i Abstract Molecularly imprinted polymers (MIPs) are smart polymers for selective recognition of target analytes. This work focuses on developing MIPs for aquatic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) in seawater. MIPs are generally prepared with a monomer, cross-linker, template or pseudo-template, and solvent (porogen). As with most porous adsorbents, MIPs exhibit high surface area and porosity, controlled pore size and mechanical stability. It has been recognized that the solvent system plays a key role in the pore generation, influencing the shape, size and volume of pores in MIPs. Rather than taking a trial-and-error approach, Hansen solubility parameters (HSPs) are used in this work to develop a model to predict the suitability of porogen for the formation of MIP films with specified porosity. Hansen solubility parameters help to predict the ther- modynamic compatibility of a porogen with the prepolymerization components, which is a good estimate of the propensity to form a polymeric network with required characteris- tics. MIPs fabricated using the systematic method based on Hansen solubility parameters were combined with GC-MS to determine the concentration of naphthalene, fluorene, phenan- threne and pyrene in water samples. The porous MIPs were also used to extract and de- termine the concentration of PAHs in produced water which is a byproduct generated along with the production of oil and gas from on shore and offshore platforms.
    [Show full text]
  • Use of High Throughput Assays and Computational Tools; Endocrine Disruptor Screening Program; Notice of Availability and Opportunity for Comment’’
    NRDC EPA-HQ-OPPT-2015-0305 August, 2015 Comments from the Natural Resources Defense Council On The Document Titled, ‘‘Use of High Throughput Assays and Computational Tools; Endocrine Disruptor Screening Program; Notice of Availability and Opportunity for Comment’’ To the U.S. Environmental Protection Agency Docket No. EPA-HQ-OPPT-2015-0305 August 18, 2015 Background The Natural Resources Defense Council ("NRDC") is a national, non-profit environmental organization of lawyers, scientists, and other professionals. NRDC presents these comments on behalf of our 1.4 million members and online activists. NRDC does not have any financial interest in the topic of these comments. The endocrine system utilizes highly complex, tightly controlled molecular processes for its optimal functioning in the body. The proper balance of hormones can be synchronized in a variety of ways (including direct protein binding, epigenetic alterations, gene activation and silencing), and is essential across the entirety of the life course. Small changes in the perfectly orchestrated symphony of hormone levels can severely disrupt the harmony necessary for critical windows of development (e.g., fetal development, infanthood, childhood, and adolescence), leaving the body vulnerable to a host of negative health outcomes (such as diabetes, cancer, obesity, and reproductive dysfunction). The last decade has seen an exponential increase in the development of computational, biological, and chemical tools capable of increasing both the number of chemicals analyzed and the pace of chemical toxicity evaluation. These tools, including the EPA Toxicity Forecaster (ToxCast™) and the National Institute of Environmental Health Sciences (NIEHS) Tox21 platforms, have the potential to rapidly generate molecular and cellular data for thousands of chemicals at once, and provide an additional stream of useful information that can aide in regulatory decision-making.
    [Show full text]
  • DMACC Chemical Hygiene Plan
    CHEMICAL HYGIENE PLAN DES MOINES AREA COMMUNITY COLLEGE ALL CAMPUSES Last Revision: November 1, 2005 TABLE OF CONTENTS PAGE A. INTRODUCTION...............................................................................................A-1 Regulatory Basis..................................................................................................A-1 Administrative Responsibilities...........................................................................A-1 Required Content of Plan.....................................................................................A-2 B. STANDARD OPERATING PROCEDURES.................................................B-1 Ordering Chemicals .............................................................................................B-1 Receipt and Distribution of Chemicals................................................................B-2 Safe Storage of Chemicals...................................................................................B-3 Safe Use of Chemicals.........................................................................................B-4 Safe Use of Flammable/Combustibles.................................................................B-6 Safe Use of Corrosives.........................................................................................B-7 Safe Use of Reactives ..........................................................................................B-8 Special Procedures for Carcinogens, Reproductive Toxins and Acute Toxins ..............................................................B-9
    [Show full text]
  • Cracking Fundamentals
    Thermal Cracking Fundamentals M. T. Klein Outline 1. Elementary Steps 2. Alkyl Aromatics 3. Alkyl Naphthenics 4. Hydroaromatics 5. Conclusions Thermal Cracking Fundamentals 1 © Michael T. Klein et al. Cracking Fundamentals CATALYTIC: Carbenium Ion Stability Controls THERMAL: Free Radical Stability Controls Thermal Cracking Fundamentals 2 © Michael T. Klein et al. Thermal Cracking: Elementary Steps 1. Bond Fission R - R' R• + R'• Primary 2. Hydrogen Transfer Radical Allowed R• + R'H RH + R'• R' • 3. Scission R + • Can Continue Bond 4. Radical Recombination/Disproportionation R• + R'• R - R' Recombination R + O' Disproportion Kinetics - SSA Standard - Long Chains Thermal Cracking Fundamentals 3 - Scission to 1° Radical OK, Not Great © Michael T. Klein et al. Pyrolysis Reaction Families 1. Bond Fission: R 1 - R 2 R1• + R 2• log10 (A/s -1 ) = 16 1, E* = d° (bond strength) Compound d°/kcal mol -1 t1/2 400°C t1/2 750°C Ph-Ph 113.7 1.6 x 10 14 y 37y PhCH 2Ph 89.6 2.4 x 10 6y 2.3h PhCH 2-CH 2Ph 61.4 14h 7.8ms 73.9 19y 3.6s PhCH 2-CH 2CH 2Ph a half life for homolysis ThermalPoutsma, Cracking Fundamentals M. L. Energy Fuels, Vol. 4, No. 2, 1990, p. 1. 4 © Michael T. Klein et al. Pyrolysis Reaction Families 2. Hydrogen Abstraction (Transfer): R 1• + RH R1H + R• log10 (A/l mol -1 s -1 ) = ~8 E*/kcal mol -1 = ~12-20 log10 k400 = 2-5 Polanyi Relation E* = E* 0 - q 11.5 0.25 Thermal Cracking Fundamentals 5 © Michael T.
    [Show full text]