This File Was Created by Scanning the Printed

Total Page:16

File Type:pdf, Size:1020Kb

This File Was Created by Scanning the Printed Mycoiogia, 104(1),2012, pp. 164-174. DOl: 10.3852/11-046 1;') 2012 by The Mycological Society of America, Lawrence,KS 66044-8897 Cryptolepiota, a new sequestrate genus in the Agaricaceae with evidence for adaptive radiation in western North America Bradley R. Kropp! although G. clelandi subsequently was transferred to Department of Biology, 5305 Old Main Hill, Utah State the monotypic genus Horakiella by Castellano and University, Logan, Utah 84322 Trappe (1992). A few years later Gigasperma amer­ Steve Albee-Scott icanum Kropp and Hutchison was added to the genus Environmental Sciences, jackson Community College, so that it currently contains two species, G. cryptica 2111 Emmons Road, jackson, Michigan 49201 and G. amencanum (Kropp and Hutchison 1996). Gigasperma crypticais known only from New Zealand Michael A. Castellano where it occurs with species of Nothofagus (Castellano United States Department of AgricuituTe, Forest Seroice, and Trappe 1992). On the other hand, Gigasperma Northern Research Station, Forestry Sciences Laboratory, far Corvallis, Oregon 97331 anrencanumthus has been found only in the western United States. It is rarely collected and occurs in stands James M. Trappe of Cercocarpus ledifolius Nutt., a shrub or small tree in Department of Forest Ecosystems and Society, Oregon the Rosaceae that grows in semi-arid habitats through­ State University, Corvallis, Oregon 97331 out much of western North America. Because C. ledifolius is one of the Rosaceae that form ectomycor­ rhizas Kropp and Hutchison (1996) suggested that G. Abstract: Phylogenetic analyses based on nLSU and aJnericanum might be ectomycorrhizal, although this ITS sequence data indicate that the sequestrate genus has not been demonstrated experimentally. Gigasperma is polyphyletic. Gigasperma cryptica, which Despite the fact that both Gigasperma species are is known only from New Zealand, has affinities with hypogeous and have a similar spore morphology, the the Cortinariaceae whereas G. americanum and two enormous geographical distance separating their additional undescribed taxa from western North populations raises doubts about their relatedness. America are derived from Lepiota within the Agarica­ Moreover collections of additional, potentially unde­ ceae. The three North American taxa appear to be scribed material that shared morphological affinity recently evolved and are closely related. They occur with Gigasperma indicate that evolutionary radiation in similar environments and form a well supported might have occurred within this group in western clade indicating that adaptive radiation has occurred North America. The objectives of this work were: within this group of fungi. An independent genus (i) to assess the monophyly of Gigasperma sensu lato with sequestrate fructifications, Cryptolepiota is pro­ and (ii) to describe the two new taxa from North posed to accommodate the three species in this clade. America and determine their phylogenetic positions. Cryptolepiota microspora and C. mengei are described as new, and G. americanum is transferred to Crypto­ MATERIALS AND METHODS lepiota. Gigasperma crypticais illustrated and compared with the species of Cryptolepiota. Microscopic features were measured from material mount­ Key words: Basidiomycota, Cortinariaceae, fungi, ed in Melzer's reagent with oil immersion at 1000X, and Gigasperma, phylogenetics photomicrographs were taken with interference contrast. Spore measurements are reported as averages (20 spores) and ranges, whereas measurements for the spore wall and INTRODUCTION the other cells are giyen as ranges. Spore dimensions are given as length then width. The genus Gigasperma was erected by Horak (1971) DNA was extracted with the method of Kropp et aL to accommodate two sequestrate fungi from Tasma­ (1996). Briefly, dried herbarium material was cmshed in nia and New Zealand. Gigasperma is characterized liquid nitrogen before being mixed with an extraction by its hypogeous habit and distinctive smooth, buffer (0.7 M NaCl, 0.05 M Tris-HCL [pH 8], 0.01 M EDTA, subglobose to globose, thick-walled basidiospores. As 1 % (3-mercaptoethanol, 1% CTAB) and incubated at 60 C. proposed by Horak, the genus comprised two taxa, The mixture was emulsified in chloroform : isoamyl alcohol G. cryptica Horak and G. clelandi (Rodway) Horak, (24 : 1 by volume) and centlifuged. The DNA was precip­ itated from the supernatant with cold isopropyl alcohoL Submitted 1 Feb 2011; accepted for publication 8Jun 2011. Standard PCR protocols were used to amplify the portion I Corresponding author. Tel: (435) 797-3738; E-mail: brad.kropp@ of the nuclear large ribosomal subunit (nLSU) between usu.edu primers LROR and LRS (Moncalvo et aL 2000, Vilgalys and 164 KRopp ET AL.: CRYPTOLEPJOTA GEN. NOV. 165 Hester 1990), and the internal transcribed spacer (ITS) also consistent overall with the findings of Matheny et al. was amplified between primers ITS4 and ITS5 (White et al. (2006), although there are differences in tree 1990). Direct sequencing of the PCR products was done topology, potentially because we sampled far fewer with primers LROR and LR5 for the nLSU and ITS4 and taxa than they did. ITS5 for ITS. The sequences used for the phylogenetic In our analysis the taxa we placed in C1yptolepiota analysis were obtained with dye terminator methods with an were divided by Lepiota erminea (Fr.) Gillet (FIG. 1), ABI 3730 DNA Analyzer and deposited in GenBank (TABLE I). although posterior probabilitysupport for this position Initial BLAST queries with sequences from the Gigaspemw of L. erminea in this clade was less than 90%. With species indicated that they belong to the agaricoid clade of further analysis the position of L. em�ineaappeared to Matheny et al. (2006). Thus, taxon sampling to assess the stabilize and all three Cryptolepiota species were monophyly of Gigasperma was focused on this clade with monophyletic with good support. The clade compris­ members of the tricholomatoid clade of Matheny et al. (2006) ing Cryptolepiota is supported as being derived from being used to root the tree. To assess the phylogenetic Lepiota and the analysis also supports the proposition positions of the North American taxa relative to LejJiota, taxon that all three taxa are distinct species (FIG. 2). sampling was based on Vellinga (2004). The nLSU and ITS Even though the topology of our phylogram differs sequences for each sampled taxon were concatenated and somewhat from that published for Lepiota by Vellinga aligned with Clustal (Thompson et al. 1997). All taxa used in X (2003), the overall patterns observed in both studies the analysis were represented by both ITS and nLSU are consistent. In the analysis (FIG. 2) we recovered sequences (TABLE I). Alignments are available in TreeBASE, accession number 11566. A total of 1819 characters was used clusters of Lepiota species corresponding to clades 1 to assess the monophyly of GigasjJenna (FIG. 1), and 1702 and 4 as well as to clades 2/3 combined by Vellinga characters were used to assess the position of the North (2003) with good posterior probability support. American taxa relative to the genus LejJiota (FIG. 2). The aligned dataset was analyzed with MrBayes 3.1 DISCUSSION (Ronquist and Huelsenbeck 2003). Tree searches were performed with a time reversible model of evolution Based on our phylogenetic analysis, the genus (Maddison 1994, Rodriguez et al. 1990) and a discrete Gigasperma as currently understood is polyphyletic. gamma distribution with six substitution types and some Gigasperma cryptica, which is known from New invariant sites (GTR+G+I) was assumed. Posterior probabil­ Zealand, has affinities to the Cortinariaceae, whereas ities were approximated by sampling every 100 trees G. americanum and two morphologically similar simulated with the Markov chain Monte Carlo method (MCMC). The initial runs were conducted with eight active undescribed taxa from North America belong in MCMC chains, heated at 0.2, and started with a randomly the Agaricaceae (FIG. 1). The three North American chosen neighbor joining tree. The first MCMC run was species are closely related and are recently derived iterated for 1 000 000 generations, and three subsequent from Lepiota clade 1 of Vellinga (2003) (FIG. 2). MCMC simulations were done with 1000 000 generations, We propose the genus Cryptolepiota to accommo­ sampling every 100th tree. A majority consensus tree was date the North American taxa. The three Cryptolepiota calculated from the last 7000 sampled trees from a 10 000- species share unique ecological and morphological tree dataset using all runs to recover the posterior proba­ attributes and form a monophyletic lineage that bilities of the internal nodes with the SUlvIT command in appears to represent radiation within Lepiota. Crypto­ MrBayes. The results showed the convergence of two lepiota is the result of budding, the divergence of a independent MCMC chains as described in (Ronquist and new lineage from an extant parental taxon (Mayr and Huelsenbeck 2003) with a standard deviation between the Bock 2002). As a taxon Cryptolepiota differs sharply two independent chains less than 0.001. The potential scale reduction factors for all convergence statistics approached from its parental taxon macroscopically, microscopi­ 1.001 for all parameters. Posterior probablitility support cally and in its dispersal ecology, indicating that measures for nodes with less than a 90 percent posterior significant evolutionary change has taken place. The probability support are not shown. use of an independent
Recommended publications
  • A Survey of Fungi at the University of Wisconsin-Waukesha Field Station
    University of Wisconsin Milwaukee UWM Digital Commons Field Station Bulletins UWM Field Station Spring 1993 A survey of fungi at the University of Wisconsin- Waukesha Field Station Alan D. Parker University of Wisconsin-Waukesha Follow this and additional works at: https://dc.uwm.edu/fieldstation_bulletins Part of the Forest Biology Commons, and the Zoology Commons Recommended Citation Parker, A.D. 1993 A survey of fungi at the University of Wisconsin-Waukesha Field Station. Field Station Bulletin 26(1): 1-10. This Article is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Field Station Bulletins by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. A Survey of Fungi at the University of Wisconsin-Waukesha Field Station Alan D. Parker Department of Biological Sciences University of Wisconsin-Waukesha Waukesha, Wisconsin 53188 Introduction The University of Wisconsin-Waukesha Field Station was founded in 1967 through the generous gift of a 98 acre farm by Ms. Gertrude Sherman. The facility is located approximately nine miles west of Waukesha on Highway 18, just south of the Waterville Road intersection. The site consists of rolling glacial deposits covered with old field vegetation, 20 acres of xeric oak woods, a small lake with marshlands and bog, and a cold water stream. Other communities are being estab- lished as a result of restoration work; among these are mesic prairie, oak opening, and stands of various conifers. A long-term study of higher fungi and Myxomycetes, primarily from the xeric oak woods, was started in 1978.
    [Show full text]
  • Strážovské Vrchy Mts., Resort Podskalie; See P. 12)
    a journal on biodiversity, taxonomy and conservation of fungi No. 7 March 2006 Tricholoma dulciolens (Strážovské vrchy Mts., resort Podskalie; see p. 12) ISSN 1335-7670 Catathelasma 7: 1-36 (2006) Lycoperdon rimulatum (Záhorská nížina Lowland, Mikulášov; see p. 5) Cotylidia pannosa (Javorníky Mts., Dolná Mariková – Kátlina; see p. 22) March 2006 Catathelasma 7 3 TABLE OF CONTENTS BIODIVERSITY OF FUNGI Lycoperdon rimulatum, a new Slovak gasteromycete Mikael Jeppson 5 Three rare tricholomoid agarics Vladimír Antonín and Jan Holec 11 Macrofungi collected during the 9th Mycological Foray in Slovakia Pavel Lizoň 17 Note on Tricholoma dulciolens Anton Hauskknecht 34 Instructions to authors 4 Editor's acknowledgements 4 Book notices Pavel Lizoň 10, 34 PHOTOGRAPHS Tricholoma dulciolens Vladimír Antonín [1] Lycoperdon rimulatum Mikael Jeppson [2] Cotylidia pannosa Ladislav Hagara [2] Microglossum viride Pavel Lizoň [35] Mycena diosma Vladimír Antonín [35] Boletopsis grisea Petr Vampola [36] Albatrellus subrubescens Petr Vampola [36] visit our web site at fungi.sav.sk Catathelasma is published annually/biannually by the Slovak Mycological Society with the financial support of the Slovak Academy of Sciences. Permit of the Ministry of Culture of the Slovak rep. no. 2470/2001, ISSN 1335-7670. 4 Catathelasma 7 March 2006 Instructions to Authors Catathelasma is a peer-reviewed journal devoted to the biodiversity, taxonomy and conservation of fungi. Papers are in English with Slovak/Czech summaries. Elements of an Article Submitted to Catathelasma: • title: informative and concise • author(s) name(s): full first and last name (addresses as footnote) • key words: max. 5 words, not repeating words in the title • main text: brief introduction, methods (if needed), presented data • illustrations: line drawings and color photographs • list of references • abstract in Slovak or Czech: max.
    [Show full text]
  • Universidad De Concepción Facultad De Ciencias Naturales Y
    Universidad de Concepción Facultad de Ciencias Naturales y Oceanográficas Programa de Magister en Ciencias mención Botánica DIVERSIDAD DE MACROHONGOS EN ÁREAS DESÉRTICAS DEL NORTE GRANDE DE CHILE Tesis presentada a la Facultad de Ciencias Naturales y Oceanográficas de la Universidad de Concepción para optar al grado de Magister en Ciencias mención Botánica POR: SANDRA CAROLINA TRONCOSO ALARCÓN Profesor Guía: Dr. Götz Palfner Profesora Co-Guía: Dra. Angélica Casanova Mayo 2020 Concepción, Chile AGRADECIMIENTOS Son muchas las personas que han contribuido durante el proceso y conclusión de este trabajo. En primer lugar quiero agradecer al Dr. Götz Palfner, guía de esta tesis y mi profesor desde el año 2014 y a la Dra. Angélica Casanova, quienes con su experiencia se han esforzado en enseñarme y ayudarme a llegar a esta instancia. A mis compañeros de laboratorio, Josefa Binimelis, Catalina Marín y Cristobal Araneda, por la ayuda mutua y compañía que nos pudimos brindar en el laboratorio o durante los viajes que se realizaron para contribuir a esta tesis. A CONAF Atacama y al Proyecto RT2716 “Ecofisiología de Líquenes Antárticos y del desierto de Atacama”, cuyas gestiones o financiamientos permitieron conocer un poco más de la diversidad de hongos y de los bellos paisajes de nuestro desierto chileno. Agradezco al Dr. Pablo Guerrero y a todas las personas que enviaron muestras fúngicas desertícolas al Laboratorio de Micología para identificarlas y que fueron incluidas en esta investigación. También agradezco a mi familia, mis padres, hermanos, abuelos y tíos, que siempre me han apoyado y animado a llevar a cabo mis metas de manera incondicional.
    [Show full text]
  • Mushrooming in the Age of DNA: Now Comes the Fun Part Michael Kuo*
    Volume 17, Number 1, Spring 2007 43 Mushrooming in the Age of DNA: Now Comes the Fun Part Michael Kuo* Th e fi rst reward of tree study—but one that lasts you to the end of your days—is that as you walk abroad, follow a rushing stream, climb a hill, or sit on a rock to admire the view, the trees stand forth, proclaiming their names to you. Th ough at fi rst you may fi x their identity with more or less conscious eff ort, the easy-to-know species soon become like the faces of your friends, known without thought, and bringing each a host of associations. —D. C. Peattie (1948/1991, p. 156) I LOVE THIS passage, which comes from Peat- ited from Linnaeus refl ects our understanding of tie’s 1948 A Natural History of Trees of Eastern and natural organisms, not the organisms themselves. Central North America. Peattie’s words capture Hopefully, our understanding is “accu rate,” perfectly a sense of familiarity with nature known mean ing that it corresponds with evolution and to many naturalists. Last summer, my wife Kate selection in the natural world—but this happy and I walked through woods in southeastern agreement between nature and taxonomy is Kentucky, where entire ecosystems are being laid funda mentally out of reach, and never a certainty, to waste by a coal mining practice called moun- since taxonomy is composed of hypotheses, to be taintop removal (if you have Google Earth, zoom supported (or not) by available evidence. I restate in on the region; you can see the devastation from these well known principles here because they are an altitude of 400 miles).
    [Show full text]
  • Erigenia : Journal of the Southern Illinois Native Plant Society
    ERIGENIA THE LIBRARY OF THE DEC IS ba* Number 13 UNIVERSITY OF ILLINOIS June 1994 ^:^;-:A-i.,-CS..;.iF/uGN SURVEY Conference Proceedings 26-27 September 1992 Journal of the Eastern Illinois University Illinois Native Plant Society Charleston Erigenia Number 13, June 1994 Editor: Elizabeth L. Shimp, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial St., Harrisburg, IL 62946 Copy Editor: Floyd A. Swink, The Morton Arboretum, Lisle, IL 60532 Publications Committee: John E. Ebinger, Botany Department, Eastern Illinois University, Charleston, IL 61920 Ken Konsis, Forest Glen Preserve, R.R. 1 Box 495 A, Westville, IL 61883 Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 Lawrence R. Stritch, U.S.D.A. Forest Service, Shawnee National Forest, 901 S. Commercial Su, Harrisburg, IL 62946 Cover Design: Christopher J. Whelan, The Morton Arboretum, Lisle, IL 60532 Cover Illustration: Jean Eglinton, 2202 Hazel Dell Rd., Springfield, IL 62703 Erigenia Artist: Nancy Hart-Stieber, The Morton Arboretum, Lisle, IL 60532 Executive Committee of the Society - April 1992 to May 1993 President: Kenneth R. Robertson, Illinois Natural History Survey, 607 E. Peabody Dr., Champaign, IL 61820 President-Elect: J. William Hammel, Illinois Environmental Protection Agency, Springfield, IL 62701 Past President: Jon J. Duerr, Kane County Forest Preserve District, 719 Batavia Ave., Geneva, IL 60134 Treasurer: Mary Susan Moulder, 918 W. Woodlawn, Danville, IL 61832 Recording Secretary: Russell R. Kirt, College of DuPage, Glen EUyn, IL 60137 Corresponding Secretary: John E. Schwegman, Illinois Department of Conservation, Springfield, IL 62701 Membership: Lorna J. Konsis, Forest Glen Preserve, R.R.
    [Show full text]
  • Agaricales, Basidiomycota) Occurring in Punjab, India
    Current Research in Environmental & Applied Mycology 5 (3): 213–247(2015) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2015 Online Edition Doi 10.5943/cream/5/3/6 Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India Amandeep K1*, Atri NS2 and Munruchi K2 1Desh Bhagat College of Education, Bardwal–Dhuri–148024, Punjab, India. 2Department of Botany, Punjabi University, Patiala–147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India. Current Research in Environmental & Applied Mycology 5(3), 213–247, Doi 10.5943/cream/5/3/6 Abstract This paper includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India. The information is based on the survey to dung localities of the state during the various years from 2007-2011. A total number of 172 collections have been observed, growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, open areas, zoological parks, and on dung heaps along roadsides or along village ponds, etc. High coprophilous mushrooms’ diversity has been established and a number of rare and sensitive species recorded with the present study. The observed collections belong to 95 species spread over 20 genera and 07 families of the order Agaricales. The present paper discusses the distribution of these mushrooms in Punjab among different seasons, regions, habitats, and growing habits along with their economic utility, habitat management and conservation. This is the first attempt in which various dung localities of the state has been explored systematically to ascertain the diversity, seasonal availability, distribution and ecology of coprophilous mushrooms.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Appendix B Wells Harbor Ecology (Materials from the Wells NERR)
    APPENDICES Appendix B Wells Harbor Ecology (materials from the Wells NERR) CHAPTER 8 Vegetation Caitlin Mullan Crain lants are primary producers that use photosynthesis ter). In this chapter, we will describe what these vegeta- to convert light energy into carbon. Plants thus form tive communities look like, special plant adaptations for Pthe base of all food webs and provide essential nutrition living in coastal habitats, and important services these to animals. In coastal “biogenic” habitats, the vegetation vegetative communities perform. We will then review also engineers the environment, and actually creates important research conducted in or affiliated with Wells the habitat on which other organisms depend. This is NERR on the various vegetative community types, giving particularly apparent in coastal marshes where the plants a unique view of what is known about coastal vegetative themselves, by trapping sediments and binding the communities of southern Maine. sediment with their roots, create the peat base and above- ground structure that defines the salt marsh. The plants OASTAL EGETATION thus function as foundation species, dominant C V organisms that modify the physical environ- Macroalgae ment and create habitat for numerous dependent Algae, commonly known as seaweeds, are a group of organisms. Other vegetation types in coastal non-vascular plants that depend on water for nutrient systems function in similar ways, particularly acquisition, physical support, and seagrass beds or dune plants. Vegetation is reproduction. Algae are therefore therefore important for numerous reasons restricted to living in environ- including transforming energy to food ments that are at least occasionally sources, increasing biodiversity, and inundated by water.
    [Show full text]
  • Bolbitiaceae of Kerala State, India: New Species and New and Noteworthy Records
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Österreichische Zeitschrift für Pilzkunde Jahr/Year: 2001 Band/Volume: 10 Autor(en)/Author(s): Agretious Thomas K., Hausknecht Anton, Manimohan P. Artikel/Article: Bolbitiaceae of Kerala State, India: New species and new and noteworthy records. 87-114 österr. Z. Pilzk. 10(2001) 87 ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Bolbitiaceae of Kerala State, India: New species and new and noteworthy records K. AGRETIOUS THOMAS Department of Botany University of Calicut I Kerala, 673 635, India j i ANTON HAUSKNECHT Sonndorferstraße 22 A-3712 Maissau, Austria P. MANIMOHAN Department of Botany University of Calicut Kerala, 673 635, India Received May 30, 2001 Key words: Fungi, Agaricales, Bolbitiaceae, Bolbitius, Conocybe, Descolea, Galerella, Pholiotina. - Systematics, taxonomy, mycofloristics, new species. - Mycobiota of India. Abstract: 13 species of Bolbitiaceae, representing the five genera, Bolbitius, Conocybe, Descolea, Galerella and Pholiotina, are described, illustrated and discussed. Six species, namely Conocybe brun- neoaurantiaca, C. pseudopubescens, C. radicans, C. solitaria, C. volvata and Pholiotina indica, are new to science. Bolbitius coprophilus, Descolea maculata, Galerella plicatella and Pholiotina utri- cystidiata are recorded for the first time from India. One species is tentatively recorded as Conocybe aff. velutipes, Conocybe sienophylla and C. zeylanica are rerecorded. Conocybe africana and C. bi- color are considered as synonyms of C. zeylanica. Zusammenfassung: 13 Arten der Bolbitiaceae aus den Gattungen Bolbitius, Conocybe, Descolea, Galerella und Pholiotina werden beschrieben, illustriert und diskutiert. Sechs Arten, nämlich Co- nocybe brunneoaurantiaca, C. pseudopubescens, C. radicans, C. solitaria, C. volvata und Pholiotina indica sind neu für die Wissenschaft.
    [Show full text]
  • Molecular Identification of Lepiota Acutesquamosa and L. Cristata
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 12–1007/2013/15–2–313–318 http://www.fspublishers.org Full Length Article Molecular Identification of Lepiota acutesquamosa and L. cristata (Basidiomycota, Agaricales) Based on ITS-rDNA Barcoding from Himalayan Moist Temperate Forests of Pakistan Abdul Razaq1*, Abdul Nasir Khalid1 and Sobia Ilyas1 1Department of Botany, University of the Punjab, Lahore 54590, Pakistan *For correspondence: [email protected] Abstract Lepiota acutesquamosa and L. cristata (Basidiomycota, Agaricales) collected from Himalayan moist temperate forests of Pakistan were characterized using internal transcribed spacers (ITS) of rNDA, a fungal molecular marker. The ITS-rDNA of both species was analyzed using polymerase chain reaction (PCR) and DNA sequencing. The target region when amplified using universal fungal primers (ITS1F and ITS4) generated 650-650bp fragments. Consensus sequences of both species were submitted for initial blast analysis which revealed and confirmed the identification of both species by comparing the sequences of these respective species already present in the GenBank. Sequence of Pakistani collection of L. acutesquamosa matched 99% with sequences of same species (FJ998400) and Pakistani L. cristata matched 97% with its sequences (EU081956, U85327, AJ237628). Further, in phylogenetic analysis both species distinctly clustered with their respective groups. Morphological characters like shape, size and color of basidiomata, basidiospore size, basidial lengths, shape and size of cheilocystidia of both collections were measured and compared. Both these species have been described first time from Pakistan on morph-anatomical and molecular basis. © 2013 Friends Science Publishers Keywords: Internal transcribed spacers; Lepiotaceous fungi; Molecular marker; Phylogeny Introduction of lepiotaceous fungi (Vellinga, 2001, 2003, 2006).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0005340 A1 Kristiansen (43) Pub
    US 20090005340A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0005340 A1 Kristiansen (43) Pub. Date: Jan. 1, 2009 54) BOACTIVE AGENTS PRODUCED BY 3O Foreigngn AppApplication PrioritVty Data SUBMERGED CULTIVATION OFA BASDOMYCETE CELL Jun. 15, 2005 (DK) ........................... PA 2005 OO881 Jan. 25, 2006 (DK)........................... PA 2006 OO115 (75) Inventor: Bjorn Kristiansen, Frederikstad Publication Classification (NO)NO (51) Int. Cl. Correspondence Address: A 6LX 3L/75 (2006.01) BROWDY AND NEIMARK, P.L.L.C. CI2P I/02 (2006.01) 624 NINTH STREET, NW A6IP37/00 (2006.01) SUTE 300 CI2P 19/04 (2006.01) WASHINGTON, DC 20001-5303 (US) (52) U.S. Cl. ............................ 514/54:435/171; 435/101 (57) ABSTRACT (73) Assignee: MediMush A/S, Horsholm (DK) - The invention in one aspect is directed to a method for culti (21) Appl. No.: 11/917,516 Vating a Basidiomycete cell in liquid culture medium, said method comprising the steps of providing a Basidiomycete (22) PCT Filed: Jun. 14, 2006 cell capable of being cultivated in a liquid growth medium, e - rs and cultivating the Basidiomycete cell under conditions (86). PCT No.: PCT/DK2OO6/OOO340 resulting in the production intracellularly or extracellularly of one or more bioactive agent(s) selected from the group con S371 (c)(1) sisting of oligosaccharides, polysaccharides, optionally gly (2), (4) Date: Ul. 31, 2008 cosylated peptides or polypeptides, oligonucleotides, poly s e a v-9 nucleotides, lipids, fatty acids, fatty acid esters, secondary O O metabolites Such as polyketides, terpenes, steroids, shikimic Related U.S. Application Data acids, alkaloids and benzodiazepine, wherein said bioactive (60) Provisional application No.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]