Disproportionate Roles for the X Chromosome and Proteins in Adaptive Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Disproportionate Roles for the X Chromosome and Proteins in Adaptive Evolution COMMENTARY HIGHLIGHTED ARTICLE Disproportionate Roles for the X Chromosome and Proteins in Adaptive Evolution Bret A. Payseur Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706 daptation requires genetic variation. A complete under- the X chromosome (Avery 1984), elevating the rate of evolu- Astanding of this key evolutionary process includes identifica- tion relative to autosomal loci. In an influential theoretical tion of the mutations that confer adaptive change. High-resolution article, Charlesworth et al. (1987) quantified this connection genetic dissection of particular adaptive phenotypes can pinpoint between dominance and “faster X” evolution and identified these mutations, but this is a challenging task and the resulting the biological conditions under which it applies. With several conclusions are restricted to the traits under consideration. assumptions, the relative rates of molecular evolution at An alternative approach is to examine characteristics of X-linked and autosomal loci can even be used to estimate adaptive mutations through the powerful lens of population the average dominance of new advantageous mutations, an genetics. By measuring intraspecific polymorphism and in- important quantity in evolutionary biology. terspecific divergence across genomes, evolutionary properties The study of faster X evolution is also motivated by a desire of those mutations targeted by natural selection can be to explain the outsized role of the X chromosome in speciation. discovered. Under this framework as well, generalities are In a wide variety of species pairs, the sterility and/or inviability widely sought and difficult to identify. A useful way to make of hybrids created by interspecific crosses maps differentially to progress is to compare patterns of adaptive evolution among the X chromosome (Coyne and Orr 2004). This bias seems to different categories of loci. Two contrasts are based on the ge- reflect a higher density of hybrid incompatibilities involving the nomic location of mutations: X linked vs. autosomal and pro- X chromosome (Masly and Presgraves 2007). tein coding vs. cis-regulatory (i.e., noncoding sequences that The prediction of faster X evolution has been tested re- affect local gene expression). These contrasts have generated peatedly by comparing between-species divergence at X-linked substantial interest because they are tied directly to basic ques- and autosomal genes (Meisel and Connallon 2013). The tions about adaptive evolution. most popular approach calculates the relative rate of sub- The fate of a beneficial mutation should depend on its stitution at nonsynonymous and synonymous sites, reason- mode of inheritance. This idea motivates comparisons ing that nonsynonymous changes will often be targeted by between rates of adaptive evolution on the X chromosome selection. A flurry of studies featuring Drosophila revealed and the autosomes. Recent, low-frequency recessive muta- a range of support for faster X evolution (Betancourt et al. tions are immediately exposed to selection in males when 2002; Thornton and Long 2002; Counterman et al. 2004; X-linked and are mostly hidden from selection (in hetero- Musters et al. 2006; Thornton et al. 2006; Begun et al. 2007; zygotes) when autosomal. If beneficial mutations are at Presgraves 2008; Singh et al. 2008; Vicoso et al. 2008; Grath least partially recessive on average, they will fixfasteron and Parsch 2012; Zhou and Bachtrog 2012). A recent compa- rison between high-quality genomes sequences of Drosophila simulans and D. melanogaster found faster X evolution at Copyright © 2014 by the Genetics Society of America nonsynonymous sites, UTRs, and long introns (Hu et al. doi: 10.1534/genetics.113.160648 2013). This pattern is expected if beneficial substitutions Manuscript received January 28, 2014; accepted for publication February 2, 2014 Address for correspondence: Genetics/Biotechnology 2428, 425-G Henry Mall, are recessive on average, though the authors suggest it is University of Wisconsin, Madison, WI 53706. E-mail: [email protected] more likely due to differences in gene content between the X Genetics, Vol. 196, 931–935 April 2014 931 chromosome and the autosomes. Human–chimpanzee house mice, and Mus famulus, are combined with the existing divergence (Lu and Wu 2005; Nielsen et al. 2005; Chimpanzee rat genome sequence to describe patterns of polymorphism Sequencing and Analysis Consortium 2005; Hvilsom et al. and divergence genome-wide. In this issue of Genetics, 2012), human–mouse divergence (Torgerson and Singh Kousathanas et al. translate these patterns into conclusions 2003), and mouse–rat divergence (Baines and Harr about faster X evolution, whereas Halligan et al. (2013) use 2007) support faster X, mostly for genes biased toward them to examine the relative roles of protein-coding and cis- male expression. The bird Z chromosome (the analog of regulatory variation in adaptation. the X) also shows elevated rates of protein evolution Kousathanas et al. (2014) analyze variation at 700 (Borge et al. 2005; Mank et al. 2007; Ellegren 2009) but X-linked genes and 18,110 autosomal genes. The authors com- this elevation might not be caused by selection (Mank bine two approaches to measure adaptive evolution (Eyre- et al. 2010). Walker and Keightley 2009). First, they analyze the site The divergence-based tests described above cannot frequency spectrum, fitting a demographic model to synony- discriminate between adaptive,neutral,anddeleterious mous variants (which are presumed neutral) and a selection substitutions. But the faster X prediction is strongest for model to nonsynonymous variants (Keightley and Eyre- adaptive substitutions (mildly deleterious mutations can Walker 2007). The resulting distribution of fitness effects is also fix faster due to the smaller effective population size used to calculate the average fixation probability of deleteri- of the X chromosome). All substitutions pass through a ous and neutral nonsynonymous mutations relative to neutral polymorphic stage, and combining divergence with intra- synonymous changes. Second, the authors count the numbers specific polymorphism generates a much richer portrait of of divergent nonsynonymous and synonymous sites between selection. The fraction of substitutions fixed by positive M. musculus castaneus and the outgroup species. They com- selection can be estimated by comparing polymorphism and bine divergence counts with fixation probabilities to estimate divergence at nonsynonymous and synonymous sites, allow- the proportion of substitutions that are adaptive (a; Fay ing an improved test of faster X. This approach has so far et al. 2001) and the relative rate of adaptive substitution yielded strong evidence for faster X in Drosophila (Langley (w; Gossmann et al. 2010). This mode of inference accounts et al. 2012; Mackay et al. 2012; Campos et al. 2014) and for effects of mildly deleterious mutations and demography. chimpanzees (Hvilsom et al. 2012) with mixed results for Kousathanas et al. (2014) categorize genes as male-specific rabbits (Carneiro et al. 2012). (expressed only in testis or prostate), female-specific (expressed Another salient question about the genetics of adaptation only in ovary or uterus), or non-sex-specific,basedonpublished concerns the location of causative mutations within genes: Do expression datasets for mice. they primarily fall in protein-coding regions or cis-regulatory X-linked genes exhibit higher values of a and w than elements? If cis-regulatory mutations more easily allow autosomal genes, providing clear evidence for more adap- functional fine tuning (Jacob and Monod 1961; Stern tive evolution on the X chromosome. The signal is driven by 2000; Wilkins 2002; Carroll et al. 2004) and/or are less male-specific genes—neither female-specific nor non-sex- pleiotropic than protein-coding changes (Stern 2000; specific genes differ based on whether they are X-linked or Wilkins 2002; Wray et al. 2003), the former might dispro- autosomal—as expected if exposure of recessive mutations portionately drive adaptation (Carroll 2005; Wray 2007). to selection in males is responsible (Charlesworth et al. Mutations responsible for adaptive phenotypic differences 1987). have been identified in both protein-coding and cis-regulatory Using the relative rates of adaptive evolution on the X sequences, but the issue of whether these two classes of chromosome and the autosomes, Kousanthanas et al. (2014) changes differ generally in their evolutionary properties [as estimate the average dominance of a new beneficial muta- famously proposed by King and Wilson (1975)] remains un- tion to be #0.2. The authors emphasize that the calculation resolved (Hoekstra and Coyne 2007; Wray 2007; Stern and requires many assumptions (Charlesworth et al. 1987; Con- Orgogozo 2008). nallon et al. 2012). One assumption unlikely to be met in As in the case of faster X, patterns of molecular evolution house mice is that equal numbers of males and females can help address this question. Many studies have docu- breed in nature. mented adaptive divergence in proteins; there is also good Kousathanas et al. (2014) raise another wrinkle with the evidence for adaptive evolution of putative cis-regulatory dominance explanation for faster X. Before the first meiotic sequences in Drosophila (Andolfatto 2005), humans (Torgerson division in spermatogenesis, cells are diploid: recessive X- et al. 2009), and house mice (Halligan et al. 2011; Kousathanas linked mutations are expressed but recessive autosomal et al.
Recommended publications
  • Genetics Society News
    July 2008 . ISSUE 59 GENETICS SOCIETY NEWS www.genetics.org.uk IN THIS ISSUE Genetics Society News is edited by Steve Russell. Items for future issues should be sent to Steve Russell, preferably by email to • Genetics Society Epigenetics Meeting [email protected], or hard copy to Department of Genetics, • Genetics Society Sponsored Meetings University of Cambridge, Downing Street, Cambridge CB2 3EH. The Newsletter is published twice a year, with copy dates of 1st June and • Travel, Fieldwork and Studentship Reports 26th November. • John Evans: an Appreciation Cocoons of the parasitoid wasp Cotesia vestalis on cabbage leaf in Taiwan. From the • Twelve Galton Lectures fieldwork report by Jetske G. de Boer on page 36. • My Favourite Paper A WORD FROM THE EDITOR A word from the editor ow soon until the $1000 based on the results of tests we genome is actually with barely understand! Here in the Hus and individual UK there is currently a sequencing is widespread? The moratorium, adhered to by publication of increasing most insurers, on the use of numbers of individual human genetic testing information for genome sequences suggests assessing life insurance that we should start to consider applications. It is important some of the implications that this remains in place and associated with the availability its effectiveness is reviewed of personal genetic well before the current information. In this issue we moratorium expires in 2011. present two articles reflecting The Human Genetics on his issue: a report from a Commission Genetics Society sponsored (http://www.hgc.gov.uk) meeting recently held in monitor issues relating to Cambridge organised by The genetic discrimination in the Triple Helix, an international UK and are a point of contact undergraduate organisation, as for those with any concerns in the Millennium Technology Prize.
    [Show full text]
  • Estimation of the Spontaneous Mutation Rate in Heliconius Melpomene
    Estimation of the Spontaneous Mutation Rate in Heliconius melpomene The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Keightley, Peter D., Ana Pinharanda, Rob W. Ness, Fraser Simpson, Kanchon K. Dasmahapatra, James Mallet, John W. Davey, and Chris D. Jiggins. 2014. “Estimation of the Spontaneous Mutation Rate in Heliconius melpomene.” Molecular Biology and Evolution 32 (1): 239-243. doi:10.1093/molbev/msu302. http://dx.doi.org/10.1093/ molbev/msu302. Published Version doi:10.1093/molbev/msu302 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13890662 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Estimation of the Spontaneous Mutation Rate in Heliconius melpomene Peter D. Keightley,*,1 Ana Pinharanda,2 Rob W. Ness,1 Fraser Simpson,3 Kanchon K. Dasmahapatra,3,4 James Mallet,3,5 John W. Davey,2 and Chris D. Jiggins2 1Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom 2Department of Zoology, University of Cambridge, Cambridge, United Kingdom 3Department of Genetics, Evolution and Environment, University College London, London, United Kingdom 4Department of Biology, University of York, York, United Kingdom 5Department of Organismic and Evolutionary Biology, Harvard University *Corresponding author: E-mail: [email protected]. Associate editor:JohnParsch Abstract We estimated the spontaneous mutation rate in Heliconius melpomene by genome sequencing of a pair of parents and 30oftheiroffspring,basedontheratioofnumberofdenovoheterozygotes to the number of callable site-individuals.
    [Show full text]
  • Letter Estimation of the Spontaneous Mutation Rate In
    Estimation of the Spontaneous Mutation Rate in Heliconius melpomene Peter D. Keightley,*,1 Ana Pinharanda,2 Rob W. Ness,1 Fraser Simpson,3 Kanchon K. Dasmahapatra,3,4 James Mallet,3,5 John W. Davey,2 and Chris D. Jiggins2 1Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom 2Department of Zoology, University of Cambridge, Cambridge, United Kingdom 3Department of Genetics, Evolution and Environment, University College London, London, United Kingdom 4Department of Biology, University of York, York, United Kingdom 5Department of Organismic and Evolutionary Biology, Harvard University *Corresponding author: E-mail: [email protected]. Associate editor:JohnParsch Abstract We estimated the spontaneous mutation rate in Heliconius melpomene by genome sequencing of a pair of parents and 30oftheiroffspring,basedontheratioofnumberofdenovoheterozygotes to the number of callable site-individuals. We detected nine new mutations, each one affecting a single site in a single offspring. This yields an estimated mutation Downloaded from rate of 2.9 Â 10À9 (95% confidence interval, 1.3 Â 10À9–5.5 Â 10À9), which is similar to recent estimates in Drosophila melanogaster, the only other insect species in which the mutation rate has been directly estimated. We infer that recent effective population size of H. melpomene is about 2 million, a substantially lower value than its census size, suggesting a role for natural selection reducing diversity. We estimate that H. melpomene diverged from its Mullerian€ comimic H. erato about 6 Ma, a somewhat later date than estimatesbasedonalocalmolecularclock. http://mbe.oxfordjournals.org/ Key words: mutation, Heliconius, genome sequencing. Understanding the process of spontaneous mutation is cen- as synonymous sites (Drake et al.
    [Show full text]
  • Directory 2016/17 the Royal Society of Edinburgh
    cover_cover2013 19/04/2016 16:52 Page 1 The Royal Society of Edinburgh T h e R o Directory 2016/17 y a l S o c i e t y o f E d i n b u r g h D i r e c t o r y 2 0 1 6 / 1 7 Printed in Great Britain by Henry Ling Limited, Dorchester, DT1 1HD ISSN 1476-4334 THE ROYAL SOCIETY OF EDINBURGH DIRECTORY 2016/2017 PUBLISHED BY THE RSE SCOTLAND FOUNDATION ISSN 1476-4334 The Royal Society of Edinburgh 22-26 George Street Edinburgh EH2 2PQ Telephone : 0131 240 5000 Fax : 0131 240 5024 email: [email protected] web: www.royalsoced.org.uk Scottish Charity No. SC 000470 Printed in Great Britain by Henry Ling Limited CONTENTS THE ORIGINS AND DEVELOPMENT OF THE ROYAL SOCIETY OF EDINBURGH .....................................................3 COUNCIL OF THE SOCIETY ..............................................................5 EXECUTIVE COMMITTEE ..................................................................6 THE RSE SCOTLAND FOUNDATION ..................................................7 THE RSE SCOTLAND SCIO ................................................................8 RSE STAFF ........................................................................................9 LAWS OF THE SOCIETY (revised October 2014) ..............................13 STANDING COMMITTEES OF COUNCIL ..........................................27 SECTIONAL COMMITTEES AND THE ELECTORAL PROCESS ............37 DEATHS REPORTED 26 March 2014 - 06 April 2016 .....................................................43 FELLOWS ELECTED March 2015 ...................................................................................45
    [Show full text]
  • Letter Estimation of the Spontaneous Mutation Rate in Heliconius
    Estimation of the Spontaneous Mutation Rate in Heliconius melpomene Peter D. Keightley,*,1 Ana Pinharanda,2 Rob W. Ness,1 Fraser Simpson,3 Kanchon K. Dasmahapatra,3,4 James Mallet,3,5 John W. Davey,2 and Chris D. Jiggins2 1Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom 2Department of Zoology, University of Cambridge, Cambridge, United Kingdom 3Department of Genetics, Evolution and Environment, University College London, London, United Kingdom 4Department of Biology, University of York, York, United Kingdom 5Department of Organismic and Evolutionary Biology, Harvard University *Corresponding author: E-mail: [email protected]. Associate editor:JohnParsch Abstract We estimated the spontaneous mutation rate in Heliconius melpomene by genome sequencing of a pair of parents and 30oftheiroffspring,basedontheratioofnumberofdenovoheterozygotes to the number of callable site-individuals. Downloaded from We detected nine new mutations, each one affecting a single site in a single offspring. This yields an estimated mutation rate of 2.9 Â 10À9 (95% confidence interval, 1.3 Â 10À9–5.5 Â 10À9), which is similar to recent estimates in Drosophila melanogaster, the only other insect species in which the mutation rate has been directly estimated. We infer that recent effective population size of H. melpomene is about 2 million, a substantially lower value than its census size, suggesting a role for natural selection reducing diversity. We estimate that H. melpomene diverged from its Mullerian€ comimic H. erato http://mbe.oxfordjournals.org/ about 6 Ma, a somewhat later date than estimatesbasedonalocalmolecularclock. Key words: mutation, Heliconius, genome sequencing. Understanding the process of spontaneous mutation is cen- as synonymous sites (Drake et al.
    [Show full text]
  • T:\Year Book\2003\Review\Pagema
    The Royal Society of Edinburgh Review 2003 (Session 2001-2002) The Royal Society of Edinburgh Review 2003 THE ROYAL SOCIETY OF EDINBURGH REVIEW OF THE SESSION 2001-2002 The Royal Society of Edinburgh 22-26 George Street Edinburgh, EH2 2PQ Telephone : 0131 240 5000 Fax : 0131 240 5024 email : [email protected] Scottish Charity No SC000470 Printed in Great Britain by J W Arrowsmith Ltd, Bristol, BS3 2NT Cover illustration by Aird McKinstrie. Design by Jennifer Cameron THE ROYAL SOCIETY OF EDINBURGH REVIEW OF THE SESSION 2001-2002 PUBLISHED BY THE RSE SCOTLAND FOUNDATION ISSN 1476-4342 CONTENTS Proceedings of the Ordinary Meetings .................................................. 3 Proceedings of the Annual Statutory Meeting ...................................... 5 Trustees report to 31 March 2002 ...................................................... 17 Auditor’s Report and Accounts ........................................................... 29 Schedule of Investments .................................................................... 51 Activities Prize Lectures ............................................................................... 55 Lectures ....................................................................................... 71 Conferences, Symposia, Workshops and Exhibitions .................... 127 Publications ................................................................................ 149 Fundraising ................................................................................. 151 The Scottish Science Advisory
    [Show full text]
  • Inferring Parameters of the Distribution of Fitness Effects of New Mutations When Beneficial Mutations Are Strongly Advantageous
    G3: Genes|Genomes|Genetics Early Online, published on May 5, 2020 as doi:10.1534/g3.120.401052 1 Inferring parameters of the distribution of 2 fitness effects of new mutations when 3 beneficial mutations are strongly 4 advantageous and rare 5 Tom R. Booker1,2 6 7 1. Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, 8 Canada. 9 2. Biodiversity Research Centre, University of British Columbia, Vancouver, Canada 10 11 Correspondence: [email protected] 12 13 14 15 16 17 18 19 1 © The Author(s) 2020. Published by the Genetics Society of America. 20 Abstract 21 Characterising the distribution of fitness effects (DFE) for new mutations is central in evolutionary 22 genetics. Analysis of molecular data under the McDonald-Kreitman test has suggested that 23 adaptive substitutions make a substantial contribution to between-species divergence. Methods 24 have been proposed to estimate the parameters of the distribution of fitness effects for positively 25 selected mutations from the unfolded site frequency spectrum (uSFS). Such methods perform well 26 when beneficial mutations are mildly selected and frequent. However, when beneficial mutations 27 are strongly selected and rare, they may make little contribution to standing variation and will 28 thus be difficult to detect from the uSFS. In this study, I analyse uSFS data from simulated 29 populations subject to advantageous mutations with effects on fitness ranging from mildly to 30 strongly beneficial. As expected, frequent, mildly beneficial mutations contribute substantially to 31 standing genetic variation and parameters accurately recovered from the uSFS. However, when 32 advantageous mutations are strongly selected and rare, there are very few segregating in 33 populations at any one time.
    [Show full text]
  • 1 the Nature of Genetic Variation for Complex Traits Revealed by GWAS and Regional Heritability Mapping Analyses Armando Caballe
    Genetics: Early Online, published on October 19, 2015 as 10.1534/genetics.115.177220 The nature of genetic variation for complex traits revealed by GWAS and Regional Heritability Mapping analyses Armando Caballero*, Albert Tenesa§,† and Peter D. Keightley‡ * Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain § The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom † MRC HGU at the MRC IGMM, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, United Kingdom ‡ Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, United Kingdom E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] 1 Copyright 2015. Running Head: Genetic basis of missing heritability Type of manuscript: Contributed paper Key words: quantitative trait variation; complex traits; missing heritability; fitness; additive genetic variance Word count: 9442 ADDRESS FOR CORRESPONDENCE: Armando Caballero Dpto. de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310 Vigo, SPAIN E-mail: [email protected] Tel: +34 986 812 568. Fax: +34 986 812 556 2 Abstract We use computer simulations to investigate the amount of genetic variation for complex traits that can be revealed by single SNP Genome Wide Association Studies (GWAS) or Regional Heritability Mapping (RHM) analyses based on full genome sequence data or SNP chips. We model a large population subject to mutation, recombination, selection, and drift, assuming a pleiotropic model of mutations sampled from a bivariate distribution of effects of mutations on a quantitative trait and fitness.
    [Show full text]
  • Causes of Natural Variation in Fitness: Evidence from Studies Of
    Correction EVOLUTION Correction for “Causes of natural variation in fitness: Evidence from studies of Drosophila populations,” by Brian Charlesworth, which appeared in issue 6, February 10, 2015, of Proc Natl Acad Sci USA (112:1662–1669; first published January 8, 2015; 10.1073/ pnas.1423275112). The authors note that on page 1666, right column, first full paragraph, line 6, “an estimate of t of 0.044” should instead appear as “an estimate of t over both classes of mutation of 0.0073.” The authors also note that on page 1666, right column, fourth full paragraph, line 3, “although even this is likely to be a sub- stantial underestimate” should instead appear as “although the overall value is likely to be somewhat less than 0.01.” www.pnas.org/cgi/doi/10.1073/pnas.1502053112 CORRECTION www.pnas.org PNAS | March 3, 2015 | vol. 112 | no. 9 | E1049 Downloaded by guest on September 30, 2021 Causes of natural variation in fitness: Evidence from INAUGURAL ARTICLE studies of Drosophila populations Brian Charlesworth1 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2013. Contributed by Brian Charlesworth, December 12, 2014 (sent for review September 18, 2014; reviewed by James Fry and David Houle) DNA sequencing has revealed high levels of variability within most quantitative genetics, respectively. The first approach sheds light species. Statistical methods based on population genetics theory on the general nature of the fitness effects of the DNA sequence have been applied to the resulting data and suggest that most variants found in natural populations, but says little about how mutations affecting functionally important sequences are deleteri- these fitness effects are caused.
    [Show full text]
  • Estimation of the Spontaneous Mutation Rate in Heliconius Melpomene' Molecular Biology and Evolution, Vol
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Edinburgh Research Explorer Edinburgh Research Explorer Estimation of the Spontaneous Mutation Rate in Heliconius melpomene Citation for published version: Keightley, PD, Pinharanda, A, Ness, RW, Simpson, F, Dasmahapatra, KK, Mallet, J, Davey, JW & Jiggins, CD 2014, 'Estimation of the Spontaneous Mutation Rate in Heliconius melpomene' Molecular Biology and Evolution, vol. 32, no. 1, pp. 239-243. DOI: 10.1093/molbev/msu302 Digital Object Identifier (DOI): 10.1093/molbev/msu302 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Molecular Biology and Evolution Publisher Rights Statement: The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Selective Interference Among Deleterious Mutations Favours Sex And
    Selective interference among deleterious mutations favours sex and recombination in finite populations regardless of the nature of epistasis Peter D. Keightley1 and Sarah P. Otto2 1Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK 2Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver BC V6T 1Z4, Canada Corresponding author Prof. Peter Keightley Institute of Evolutionary Biology University of Edinburgh West Mains Road Edinburgh EH9 3JT UK Email: [email protected] 1 Sex and recombination are widespread, but explaining these phenomena has been one of the most difficult problems in evolutionary biology. Recombination is advantageous when different individuals in a population carry different advantageous alleles1,2. By bringing together advantageous alleles onto the same chromosome, recombination speeds up the process of adaptation1,3,4,5 and opposes the fixation of harmful mutations via Muller's ratchet4,5. Nevertheless, adaptive substitutions favour sex and recombination only if the rate of adaptive mutation is high1,6, and Muller's ratchet operates only in small or asexual populations7. Here, by tracking the fate of modifier alleles that alter the frequency of sex and recombination, we demonstrate that background selection against deleterious mutant alleles provides a stochastic advantage to sex and recombination that increases with population size. The advantage arises because, with low levels of recombination, selection at other loci severely reduces the effective population size and genetic variance in fitness at a focal locus8 (the Hill- Robertson effect), making a population less able to respond to selection and to rid itself of deleterious mutations. Sex and recombination reveal the hidden genetic variance in fitness by combining chromosomes of intermediate fitness to create chromosomes that are relatively free of (or loaded with) deleterious mutations.
    [Show full text]
  • Inferring the Probability of the Derived Vs. the Ancestral Allelic State at a Polymorphic Site
    | INVESTIGATION Inferring the Probability of the Derived vs. the Ancestral Allelic State at a Polymorphic Site Peter D. Keightley1 and Benjamin C. Jackson Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom ABSTRACT It is known that the allele ancestral to the variation at a polymorphic site cannot be assigned with certainty, and that the most frequently used method to assign the ancestral state—maximum parsimony—is prone to misinference. Estimates of counts of sites that have a certain number of copies of the derived allele in a sample (the unfolded site frequency spectrum, uSFS) made by parsimony are therefore also biased. We previously developed a maximum likelihood method to estimate the uSFS for a focal species using information from two outgroups while assuming simple models of nucleotide substitution. Here, we extend this approach to allow multiple outgroups (implemented for three outgroups), potentially any phylogenetic tree topology, and more complex models of nucleotide substitution. We find, however, that two outgroups and the Kimura two-parameter model are adequate for uSFS inference in most cases. We show that using parsimony to infer the ancestral state at a specific site seriously breaks down in two situations. The first is where the outgroups provide no information about the ancestral state of variation in the focal species. In this case, nucleotide variation will be underestimated if such sites are excluded. The second is where the minor allele in the focal species agrees with the allelic state of the outgroups. In this situation, parsimony tends to overestimate the probability of the major allele being derived, because it fails to account for the fact that sites with a high frequency of the derived allele tend to be rare.
    [Show full text]