Astronomical Facts 'N Stuff

Total Page:16

File Type:pdf, Size:1020Kb

Astronomical Facts 'N Stuff Astronomical Facts ‘n Stuff Mini Encyclopedia of Astronomical terms, abbreviations, objects & facts. Contents Version History ......................................................................................................................................... 2 Glossary of Astronomical & Astrophotography Terms ............................................................................... 3 Astronomy Acronyms & Abbreviations .................................................................................................. 150 Spectral Star Classes ............................................................................................................................ 159 Stellar Evolutionary Paths .................................................................................................................... 160 The Solar System .................................................................................................................................. 161 Planetary Information .......................................................................................................................... 163 Asteroids from the Main Belt ................................................................................................................ 164 Asteroids from the Kuiper Belt ............................................................................................................. 166 Modern Constellations .......................................................................................................................... 167 The Greek Alphabet .............................................................................................................................. 170 Meteor Showers .................................................................................................................................... 171 Significant People in Astronomy ........................................................................................................... 173 SI Units and Specifics ........................................................................................................................... 176 Unofficial Units and Specifics ................................................................................................................ 177 Formulas .............................................................................................................................................. 178 The Periodic Table ................................................................................................................................ 196 The Electromagnetic Spectrum ............................................................................................................. 197 Lens & Mirror Characteristics................................................................................................................ 198 4 October 2012 1 © Paul Thomas Version History Version Date Changes made 1.0.0 20 Jul 2012 Original document release 1.0.1 12 Aug 2012 Added Lens & Mirror characteristics, Electromagnetic spectrum, Solar System quick info, more terms. 1.1.0 6 Sep 2012 Added more definitions, Added more Constellation Information, Added Significant People, Changed page format to landscape. 1.2.0 30 Sep 2012 Separated Asteroids & Kuiper Belt from Solar System, Added Meteor Showers, Added Formulae, Added Planetary Info. 1.2.1 3 Oct 2012 Added more, and tidied up terms. 4 October 2012 2 © Paul Thomas Glossary of Astronomical & Astrophotography Terms ..A Abbe See “Eyepiece” Abell Cluster A galaxy cluster that belongs to the Abell catalogue. This is a listing of more than 4,000 galaxy clusters that meet certain criteria, one of which is having at least 30 galaxies within a set magnitude range. The catalogue is divided into five groups of richness according to how many galaxies the cluster contains. Class 0 clusters contain between 30 and 49 galaxies, and class 5 clusters contain more than 299 galaxies. Aberration Any optical defect and/or design error which causes any of the processed light to deviate from reaching the focal point, therefore reducing the quality of the image. Aberration of Starlight The apparent displacement of a star's position as a consequence of Earth's motion through space and the finite speed of light. Ablation The vaporisation of the surface layers of a body entering the atmosphere as a consequence of the heating that results from the compression of air ahead of it. Absolute Brightness (Absolute Magnitude) A measure of the true brightness of an object. The absolute brightness or magnitude of an object is the apparent brightness or magnitude it would have if it were located exactly 32.6 light-years (10 parsecs) away. Absolute Magnitude A scale for measuring the actual brightness of a celestial object without accounting for the distance of the object. Absolute magnitude measures how bright an object would appear if it were exactly 10 parsecs (about 33 light years) away from Earth. Absolute Zero This is the coldest temperature theoretically possible (-273.15 degrees Celsius), where the motion of atoms in a material would stop completely, leaving them only with a small amount of quantum mechanically energy. 4 October 2012 3 © Paul Thomas Absorption The process by which light transfers its energy to matter. For example, a gas cloud can absorb starlight that passes through it. After the starlight passes through the cloud, dark lines called absorption lines appear in the star’s continuous spectrum at wavelengths corresponding to the light-absorbing elements. Absorption Line A dark line in a continuous spectrum caused by absorption of light. Each chemical element emits and absorbs radiated energy at specific wavelengths, making it possible to identify the elements present in the atmosphere of a star or other celestial body by analysing which absorption lines are present. Accretion The accumulation of dust and gas onto larger bodies such as stars, planets, and moons Accretion Disk A rotating disk of gas surrounding a compact object (such as a neutron star or black hole), formed by material falling inward. Achromatic Lens A lens with two or more elements, usually of differing glass types, designed to produce an image substantially free from false colour and bringing most of the viewed colours to a sharp focus. Active Galactic Nucleus A very bright, compact region found at the centre of certain galaxies. The brightness of an active galactic nucleus is thought to come from an accretion disk around a supermassive black hole. The black hole devours matter from the accretion disk, and this in-fall of matter provides the firepower for quasars, the most luminous type of active galactic nucleus. Active Galaxy A galaxy possessing an active galactic nucleus at its centre. Actual Field of View A characteristic of eyepiece/telescope combinations. The actual field of view is the angle, measured on the sky, from one edge of the eyepiece field of view to the other. It is approximately equal to the apparent field of view divided by the magnification. Adaptive Optics or Active Optics Guiding on steroids. In most A/O units a lens is moved in real time to correct for movements in the guide star utilising refraction. This differs from traditional guiding where corrections are sent to the mount over periods of ~0.5 to 5 seconds. At long focal lengths adaptive optics can be better than normal guiding. Advanced Camera for Surveys An optical camera aboard the Hubble Space Telescope that uses CCD detectors to make images. The camera covers twice the 4 October 2012 4 © Paul Thomas area, has twice the sharpness, and is up to 10 times more efficient than the telescope’s Wide Field and Planetary Camera 2. The ACS wavelength range spans from ultraviolet to near-infrared light. The camera’s sharp eye and broader viewing area allow astronomers to study the life cycles of galaxies in the remotest regions of the universe. Aerogel An advanced material used by the Stardust spacecraft to capture small particles of cometary dust. It is 99.8 per cent air and was effective at slowing down the cometary particles gently so that they weren’t damaged. Aerosol Refers to small particles suspended in the air, as opposed to large particles like snowflakes and raindrops. Aerosols make the air look hazy by scattering light. Afocal Coupling The technique of imaging through a camera lens held up to the eyepiece of a telescope. It is used for cameras with non- removable lenses. Afterglow The fading fireball of a gamma-ray burst — a sudden burst of gamma rays from deep space — that is observable in less energetic wavelengths, such as X-ray, optical, and radio. After an initial explosion, an expanding gamma-ray burst slows and sweeps up surrounding material, generating the afterglow, which is visible for several weeks or months. The afterglow is usually extremely faint, making it difficult to locate and study. Airglow The faint background glow in the night sky caused by gas in the ionosphere. Because of airglow the night sky is never completely dark as seen from Earth's surface. Airy Disk The Airy disk is the brightest spot formed by a star image as seen through a telescope. It is surrounded by alternating rings of light and dark (these are due to diffraction - any light passing through an aperture is diffracted, and the effect is inversely proportional to the size of the aperture.) An optical system of good quality increases the relative brightness of the central Airy disk compared to the surrounding diffraction rings.
Recommended publications
  • A Study of Ancient Khmer Ephemerides
    A study of ancient Khmer ephemerides François Vernotte∗ and Satyanad Kichenassamy** November 5, 2018 Abstract – We study ancient Khmer ephemerides described in 1910 by the French engineer Faraut, in order to determine whether they rely on observations carried out in Cambodia. These ephemerides were found to be of Indian origin and have been adapted for another longitude, most likely in Burma. A method for estimating the date and place where the ephemerides were developed or adapted is described and applied. 1 Introduction Our colleague Prof. Olivier de Bernon, from the École Française d’Extrême Orient in Paris, pointed out to us the need to understand astronomical systems in Cambo- dia, as he surmised that astronomical and mathematical ideas from India may have developed there in unexpected ways.1 A proper discussion of this problem requires an interdisciplinary approach where history, philology and archeology must be sup- plemented, as we shall see, by an understanding of the evolution of Astronomy and Mathematics up to modern times. This line of thought meets other recent lines of research, on the conceptual evolution of Mathematics, and on the definition and measurement of time, the latter being the main motivation of Indian Astronomy. In 1910 [1], the French engineer Félix Gaspard Faraut (1846–1911) described with great care the method of computing ephemerides in Cambodia used by the horas, i.e., the Khmer astronomers/astrologers.2 The names for the astronomical luminaries as well as the astronomical quantities [1] clearly show the Indian origin ∗F. Vernotte is with UTINAM, Observatory THETA of Franche Comté-Bourgogne, University of Franche Comté/UBFC/CNRS, 41 bis avenue de l’observatoire - B.P.
    [Show full text]
  • Discovery of an Extreme Mass-Ratio Satellite of (41) Daphne in a Close Orbit
    Asteroids, Comets, Meteors (2008) 8370.pdf DISCOVERY OF AN EXTREME MASS-RATIO SATELLITE OF (41) DAPHNE IN A CLOSE ORBIT. W. J. Merline1, A. R. Conrad2, J. D. Drummond3, B. Carry4, C. Dumas4, P. M. Tamblyn1, C. R. Chapman1, W. M. Owen5, D. D. Durda1, R. D. Campbell2, R. W. Goodrich2. 1Southwest Research Institute, 1050 Walnut Street, Ste 300, Boulder, CO 80302,2W.M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI, 96743, 3Starfire Optical Range, Directed Energy Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117,4ESO Very Large (VLT), European Southern Observatory, Alonso de Cordova 3107, Vitacura Casilla 19001, Santiago 19, Chile, 5Jet Propulsion Laboratory, 301-150, 4800 Oak Grove Dr, Pasadena, CA 91109 Introduction. We report the discovery of a small we have only been able to make preliminary estimates satellite to large C-type asteroid (41) Daphne, using of the system parameters. From the single arc of the adaptive optics on Keck II. The satellite appears to orbit, we had at first estimate a semi-major axis of have the most extreme mass ratio (106) of any binary about 443 km, but revised estimates put it at closer to known. It is also in a particularly close orbit for this 405 km. The orbital period estimate on our first report class of binary. We consider how difficult is such a was 1.6 days, but this may be revised downward. The detection for large asteroids in the Main Belt, and what most unsual aspect is that this object appears to have consequences it may have for the main-belt binary the most extreme size ratio of any known binary.
    [Show full text]
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations*
    Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations* F. Marchisa,g, J.E. Enriqueza, J. P. Emeryb, M. Muellerc, M. Baeka, J. Pollockd, M. Assafine, R. Vieira Martinsf, J. Berthierg, F. Vachierg, D. P. Cruikshankh, L. Limi, D. Reichartj, K. Ivarsenj, J. Haislipj, A. LaCluyzej a. Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA. b. Earth and Planetary Sciences, University of Tennessee 306 Earth and Planetary Sciences Building Knoxville, TN 37996-1410 c. SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d. Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e. Observatorio do Valongo/UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f. Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil. g. Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h. NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, United States j. Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, U.S.A * Based in part on observations collected at the European Southern Observatory, Chile Programs Numbers 70.C-0543 and ID 72.C-0753 Corresponding author: Franck Marchis Carl Sagan Center SETI Institute 189 Bernardo Ave. Mountain View CA 94043 USA [email protected] Abstract: We collected mid-IR spectra from 5.2 to 38 µm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups.
    [Show full text]
  • George C. Marshall Space Flight Center, Huntsville, Alabama NASA-GEORGE C
    / https://ntrs.nasa.gov/search.jsp?R=19650002710 2017-11-29T22:08:06+00:00Z / i i b el NASA TECHNICAL NASA TM X-53150 MEMORANDUM # OCTOBER 16o 1964 Lt_ GPO PRICE $ OTS PRICE(S) $ E'- Hard copy (Hc) _',/_, _ Micro_che_MFI_, g2) PROGRESS REPORT NO.6 ON STUDIES IN THE FIELD8 OF SPACE FLIGHT AND GUIDANCE THEORY Sponsored by .S,ero- _strodynamies Laboratory (ACCEIIBION NUMBER) (I*H RU) NASA i {PAGES) DE) INASA GR OR TMX OR AD NUMBER) ( GORY) George C. Marshall Space Flight Center, Huntsville, Alabama NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER TECHNICAL MEMORANDUM X-53150 PROGRESS REPORT NO. 6 on Studies in the Fields of SPACE FLIGHT AND GUIDANCE THEORY Sponsored by Aero-Astrodynamics Laboratory of Marshall Space Flight Center STmCT I ; This paper contains progress reports of NASA-sponsored studies in the areas of space flight and guidance theory. The studies are carried on by several universities and industrial companies. This progress report covers the period from December 18, 1963 to July 23, 1964. The technical supervisor of the contracts is W. E Miner, Deputy Chief of the Astrodynamics and Guidance Theory Division, Aero-Astrodynamics Laboratory, Marshall Space Flight Center. authors first derive some formulas of Keplerian motion involving their six elements, then the perturbation equations, and finally, present the first order solution. It is inter- esting to observe that no critical angles occur in the second order solution, but that they will appear in a third order solution. The tenth paper by R. E. Wheeler of Hayes International Corporation presents a statistical procedure for estimating the ,accuracy that can be expected of a given guidance func- tion.
    [Show full text]
  • Occuttau'on3newsteter
    Occuttau'on3Newsteter Volume III, Number 5 September, 1983 Occultation Newsletter is pub?ished by the International Occultation Timing Association. Editor and Compos- itor: H. F. DaBo11; 6 N 106 white Oak Lane; St. Charles, IL 60174; U. S. A. Please send editorial matters, renewals, address changes, and reimbursement requests to the above, but for new memberships, new subscrip- tions, back issues, and any special requests, write to IOTA; P. 0. Box 3392; Columbus, OH 43210-0392; U.S.A. FROM THE PUBLISHER this page. William Stein, Fredericksburg, VA, has volunteered to take over Berton Stevens' job of This is the third issue of 1983. maintaining IOTA'S machine-readable records for pro- ducing address labels and station card input for lu- Please note the changes wrought by the recent chang- nar grazing occultation and local planetary/aster- es of officers; see the masthead and IOTA NEWS. The oidal appulse predictions. Since some software dc- Tinley Park address should no longer be used. The ve1oµnent is needed, Stevens will continue to do St. Charles address should be used for editorial this work at least for another month. When Stein matters, renewals, address changes, and reimburse- assumes the job, he will update the files according ment requests. The Columbus address should be used to data supplied by DaBo11. for new memberships, new subscriptions, back issues, b ' W, , and any special requests. A copy of IOTA'S by-laws is enclosed with this is- sue, for manbers. Also enclosed with this issue, o.n.'s price is $1.40/issue, or $5.50/year (4 is- for members, is a ballot, and envelope for sending sues) including first class surface mailing.
    [Show full text]
  • Seasonal and Spatial Variations in the Attenuation of Light in the North Atlantic Ocean
    JEFFREY H. SMART SEASONAL AND SPATIAL VARIATIONS IN THE ATTENUATION OF LIGHT IN THE NORTH ATLANTIC OCEAN This article examines seasonal and spatial vanatlOns in the average depth profiles of the diffuse attenuation coefficient, Kd, for visible light propagating downward from the ocean surface at wavelengths of 490 and 532 nm. Profiles of the depth of the nth attenuation length are also shown. Spring, summer, and fall data from the northwestern and north central Atlantic Ocean and winter data from the northeastern Atlantic Ocean are studied. Variations in the depth-integrated Kd profiles are important because they are related to the depth penetration achievable by an airborne active optical antisubmarine warfare system. INTRODUCTION Numerous investigators have tried to characterize the the geographic areas and seasons indicated in Table 1 and diffuse attenuation coefficient (hereafter denoted as Kd) Figure 1. Despite the incomplete spatial and temporal for various ocean areas and for the different seasons. Platt coverage across the North Atlantic Ocean, this article and Sathyendranath 1 generated numerical fits to averaged should serve as a useful resource to estimate the optical profiles from coastal and open-ocean regions, and they characteristics in the areas studied. divided the North Atlantic into provinces that extended The purpose of this article is to characterize the sea­ from North America to Europe and over large ranges sonal and spatial variations in diffuse attenuation at 490 in latitude (e.g. , from 10.0° to 37.00 N and from 37.0° to and 532 nm. Because Kd frequently changes with depth, 50.00 N). In addition, numerous papers have attempted profiles of depth versus number of attenuation lengths are to model chlorophyll concentrations (which are closely required to characterize the attenuation of light as it correlated with Kd ) using data on available sunlight as a propagates from the surface downward into the water function of latitude and season, nutrient concentrations, column.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • The 4 Major Asteroids and Chiron Report For
    The 4 Major Asteroids and Chiron Report for Brad Roberts 10 January 1964 6:33 AM Winnipeg, Manitoba,Canada Calculated for: Standard time, Time Zone 6 hours West Latitude: 49 N 53 Longitude: 97 W 09 Positions of Planets at Birth: Sun 19 Cap 18 Asc. 20 Sag 35 Moon 1 Sag 21 MC 21 Lib 49 Mercury 6 Cap 24 2nd cusp 0 Aqu 56 Venus 21 Aqu 54 3rd cusp 17 Pis 07 Mars 27 Cap 52 5th cusp 15 Tau 45 Jupiter 11 Ari 42 6th cusp 4 Gem 07 Saturn 21 Aqu 25 Ceres 9 Sag 44 Uranus 9 Vir 47 Pallas 20 Sco 12 Neptune 17 Sco 47 Juno 23 Sco 36 Pluto 14 Vir 47 Vesta 4 Cap 54 True Node11 Can 47 Chiron 11 Pis 23 Aspects and orbs: Conjunction : 7 Deg 00 Min Trine : 5 Deg 00 Min Opposition : 6 Deg 00 Min Sextile : 3 Deg 00 Min Square : 4 Deg 00 Min Interpretations by astrologer Dave Campbell Report and Text Copyright By Cosmic Patterns Software, Inc. The contents of this report are protected by Copyright law. By purchasing this report you agree to comply with this Copyright. Libra Moon, Inc www.libramoonastrology.com www.zodiac-reports.com Chapter 1: Ceres Ceres in Sagittarius: You nurture people with your generosity cheerfulness and encouragement. Giving them the optimism and openness they need. You aim to inspire them and make them feel like they are it. Your honest disposition and behavior is also a gift for them to know your devotion to them. All of these things are exactly what you need in order to feel cared for.
    [Show full text]
  • Natural and Enhanced Attenuation of Soil and Ground Water At
    LMS/MON/S04243 Office of Legacy Management Natural and Enhanced Attenuation of Soil and Groundwater at Monument Valley, Arizona, and Shiprock, New Mexico, DOE Legacy Waste Sites 2007 Pilot Study Status Report June 2008 U.S. Department OfficeOffice ofof LegacyLegacy ManagementManagement of Energy Work Performed Under DOE Contract No. DE–AM01–07LM00060 for the U.S. Department of Energy Office of Legacy Management. Approved for public release; distribution is unlimited. This page intentionally left blank LMS/MON/S04243 Natural and Enhanced Attenuation of Soil and Groundwater at Monument Valley, Arizona, and Shiprock, New Mexico, DOE Legacy Waste Sites 2007 Pilot Study Status Report June 2008 This page intentionally left blank Contents Acronyms and Abbreviations ....................................................................................................... vii Executive Summary....................................................................................................................... ix 1.0 Introduction......................................................................................................................1–1 2.0 Monument Valley Pilot Studies.......................................................................................2–1 2.1 Source Containment and Removal..........................................................................2–1 2.1.1 Phreatophyte Growth and Total Nitrogen...................................................2–1 2.1.2 Causes and Recourses for Stunted Plant Growth........................................2–5
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]