Appulses of Jupiter and Saturn
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lab 7: Gravity and Jupiter's Moons
Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in the Universe, Galactic Superclusters. The galaxies themselves are held together by gravity, as are all of the star systems within them. Our own Solar System is a collection of bodies gravitationally bound to our star, Sol. Cutting edge science requires the use of Einstein's General Theory of Relativity to explain gravity. But the interactions of the bodies in our Solar System were understood long before Einstein's time. In chapter two of Chaisson McMillan's Astronomy Today, you went over Kepler's Laws. These laws of gravity were made to describe the interactions in our Solar System. P2=a3/M Where 'P' is the orbital period in Earth years, the time for the body to make one full orbit. 'a' is the length of the orbit's semi-major axis, for nearly circular orbits the orbital radius. 'M' is the total mass of the system in units of Solar Masses. Jupiter System Montage picture from NASA ID = PIA01481 Jupiter has over 60 moons at the last count, most of which are asteroids and comets captured from Written by Meagan White and Paul Lewis Page 1 the Asteroid Belt. When Galileo viewed Jupiter through his early telescope, he noticed only four moons: Io, Europa, Ganymede, and Callisto. The Jupiter System can be thought of as a miniature Solar System, with Jupiter in place of the Sun, and the Galilean moons like planets. -
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy
Barucci et al.: Surface Characteristics of TNOs and Centaurs 647 Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy M. A. Barucci and A. Doressoundiram Observatoire de Paris D. P. Cruikshank NASA Ames Research Center The external region of the solar system contains a vast population of small icy bodies, be- lieved to be remnants from the accretion of the planets. The transneptunian objects (TNOs) and Centaurs (located between Jupiter and Neptune) are probably made of the most primitive and thermally unprocessed materials of the known solar system. Although the study of these objects has rapidly evolved in the past few years, especially from dynamical and theoretical points of view, studies of the physical and chemical properties of the TNO population are still limited by the faintness of these objects. The basic properties of these objects, including infor- mation on their dimensions and rotation periods, are presented, with emphasis on their diver- sity and the possible characteristics of their surfaces. 1. INTRODUCTION cally with even the largest telescopes. The physical char- acteristics of Centaurs and TNOs are still in a rather early Transneptunian objects (TNOs), also known as Kuiper stage of investigation. Advances in instrumentation on tele- belt objects (KBOs) and Edgeworth-Kuiper belt objects scopes of 6- to 10-m aperture have enabled spectroscopic (EKBOs), are presumed to be remnants of the solar nebula studies of an increasing number of these objects, and signifi- that have survived over the age of the solar system. The cant progress is slowly being made. connection of the short-period comets (P < 200 yr) of low We describe here photometric and spectroscopic studies orbital inclination and the transneptunian population of pri- of TNOs and the emerging results. -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results F
Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results F. Roques, A. Doressoundiram, V. Dhillon, T. Marsh, S. Bickerton, J. J. Kavelaars, M. Moncuquet, M. Auvergne, I. Belskaya, M. Chevreton, et al. To cite this version: F. Roques, A. Doressoundiram, V. Dhillon, T. Marsh, S. Bickerton, et al.. Exploration of the Kuiper Belt by High-Precision Photometric Stellar Occultations: First Results. Astronomical Journal, Amer- ican Astronomical Society, 2006, 132, pp.819-822. 10.1086/505623. hal-00640050 HAL Id: hal-00640050 https://hal.archives-ouvertes.fr/hal-00640050 Submitted on 10 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Astronomical Journal, 132:819Y822, 2006 August # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. EXPLORATION OF THE KUIPER BELT BY HIGH-PRECISION PHOTOMETRIC STELLAR OCCULTATIONS: FIRST RESULTS F. Roques,1,2 A. Doressoundiram,1 V. Dhillon,3 T. Marsh,4 S. Bickerton,5,6 J. J. Kavelaars,5 M. Moncuquet,1 M. Auvergne,1 I. Belskaya,7 M. Chevreton,1 F. Colas,1 A. Fernandez,1 A. Fitzsimmons,8 J. Lecacheux,1 O. Mousis,9 S. -
Dwarf Planet Ceres
Dwarf Planet Ceres drishtiias.com/printpdf/dwarf-planet-ceres Why in News As per the data collected by NASA’s Dawn spacecraft, dwarf planet Ceres reportedly has salty water underground. Dawn (2007-18) was a mission to the two most massive bodies in the main asteroid belt - Vesta and Ceres. Key Points 1/3 Latest Findings: The scientists have given Ceres the status of an “ocean world” as it has a big reservoir of salty water underneath its frigid surface. This has led to an increased interest of scientists that the dwarf planet was maybe habitable or has the potential to be. Ocean Worlds is a term for ‘Water in the Solar System and Beyond’. The salty water originated in a brine reservoir spread hundreds of miles and about 40 km beneath the surface of the Ceres. Further, there is an evidence that Ceres remains geologically active with cryovolcanism - volcanoes oozing icy material. Instead of molten rock, cryovolcanoes or salty-mud volcanoes release frigid, salty water sometimes mixed with mud. Subsurface Oceans on other Celestial Bodies: Jupiter’s moon Europa, Saturn’s moon Enceladus, Neptune’s moon Triton, and the dwarf planet Pluto. This provides scientists a means to understand the history of the solar system. Ceres: It is the largest object in the asteroid belt between Mars and Jupiter. It was the first member of the asteroid belt to be discovered when Giuseppe Piazzi spotted it in 1801. It is the only dwarf planet located in the inner solar system (includes planets Mercury, Venus, Earth and Mars). Scientists classified it as a dwarf planet in 2006. -
The Solar System Cause Impact Craters
ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Abstracts of the 50Th DDA Meeting (Boulder, CO)
Abstracts of the 50th DDA Meeting (Boulder, CO) American Astronomical Society June, 2019 100 — Dynamics on Asteroids break-up event around a Lagrange point. 100.01 — Simulations of a Synthetic Eurybates 100.02 — High-Fidelity Testing of Binary Asteroid Collisional Family Formation with Applications to 1999 KW4 Timothy Holt1; David Nesvorny2; Jonathan Horner1; Alex B. Davis1; Daniel Scheeres1 Rachel King1; Brad Carter1; Leigh Brookshaw1 1 Aerospace Engineering Sciences, University of Colorado Boulder 1 Centre for Astrophysics, University of Southern Queensland (Boulder, Colorado, United States) (Longmont, Colorado, United States) 2 Southwest Research Institute (Boulder, Connecticut, United The commonly accepted formation process for asym- States) metric binary asteroids is the spin up and eventual fission of rubble pile asteroids as proposed by Walsh, Of the six recognized collisional families in the Jo- Richardson and Michel (Walsh et al., Nature 2008) vian Trojan swarms, the Eurybates family is the and Scheeres (Scheeres, Icarus 2007). In this theory largest, with over 200 recognized members. Located a rubble pile asteroid is spun up by YORP until it around the Jovian L4 Lagrange point, librations of reaches a critical spin rate and experiences a mass the members make this family an interesting study shedding event forming a close, low-eccentricity in orbital dynamics. The Jovian Trojans are thought satellite. Further work by Jacobson and Scheeres to have been captured during an early period of in- used a planar, two-ellipsoid model to analyze the stability in the Solar system. The parent body of the evolutionary pathways of such a formation event family, 3548 Eurybates is one of the targets for the from the moment the bodies initially fission (Jacob- LUCY spacecraft, and our work will provide a dy- son and Scheeres, Icarus 2011). -
Mission Juno: Extended & Expanded 29 11 42
“Since its first orbit in 2016, Juno has delivered one revelation after another about the inner workings of this massive gas giant. With the extended mission, we will answer fundamental questions that arose during Juno’s prime mission while reaching beyond the planet to explore Mission Juno: Extended & Expanded Jupiter’s ring system and largest satellites.” by the numbers —SwRI’s Scott Bolton, Juno principal investigator “The Juno team will start tackling a breadth of science historically required of flagships. This represents an efficient and innovative advance for NASA’s solar system exploration strategy.” — Lori Glaze, Planetary Science Division Director, NASA HQ primary mission Investigate Jupiter’s origins, interior, atmosphere extended mission and magnetosphere Investigation of Jupiter’s northern hemisphere and polar cyclones, dilute core, magnetic LAUNCH: August 5, 2011 ARRIVAL: July 2016 features being sheared by Jupiter’s zonal jets; flybys of Io, Europa and Ganymede; observation PRIMARY MISSION ENDS: July 2021 of the distant boundaries of the magnetosphere; and the first exploration of Jupiter’s rings MISSION STARTS: August 2021 MISSION ENDS: September 2025 34 Science Orbits 42 Additional Orbits Flybys over the Great Blue 6 Spot, a Magnetic Enigma SPACECRAFT ST Detailed Exploration of 19 Atmospheric 1 Jupiter’s Faint Rings Occultations ST Spacecraft Equipped 1 with a Radiation Vault MOON FLYBYS Titanium Mapping of 400 ST POUND Electronics Vault 1 Europa’s Ice Shell Thickness 3 EUROPA FLYBYS 29 Science Sensors on 11 Instruments Measurement ST of Space Search for 1 GANYMEDE FLYBYS ST Weathering 2 IO FLYBYS 1 Io’s Global on an Icy Solar Panels Spanning 66 11 Magma Ocean 3 FEET Moon 18 SPRING 2021 IMAGES COURTESY NASA/JPL/DLR/JPL-CALTECH D024769. -
Instrumental Methods for Professional and Amateur
Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A. -
Astronomical Calendar 2021 1
© 2020 by Guy Ottewell ASTRONOMICAL CALENDAR 2021 1 www.universalworkshop.com The left column gives Julian Dates For meteor showers: ZHR (zenithal (number of days from 4713 B.C. Jan. 1 hourly rate) is an estimate of the noon), useful for finding time spans number to be seen under ideal condi- between events by subtraction. The tions at the peak time if the radiant first 3 digits of the Julian date were overhead. Actual rates may be (245) are omitted, to save space. very different. Peak times (predicted Hours and minutes, where given, from where the center of the stream are in Universal Time. (Sometimes seems to cross nearest to Earth’s the hour appears as “24” or the orbit) are uncertain; best to start minute as “60,” because the instant watching the night before. Meteor was shortly before the end of the day are usually most abundant in the or hour.) morning hours. Occasions such as “Moon 1.25° NNE Tell me of errors you notice. of Venus” are appulses: closest appar- It’s hard to check the accuracy of ent approaches. They are slightly every detail, but errors are more different from conjunctions, when one easily corrected here than in the passes north of the other as measured former printed Astronomical Calendars! in right ascension or in ecliptic universalworkshop.com/contact longitude. A quasi-conjunction is an This calendar may be subject to appulse without a conjunction, and improvement. Come back to it! typically happens when a planet is near its stationary moment. Explanation of terms can be found in Occasions when three bodies are our glossary book Albedo to Zodiac.