011P 2008.008P 2008.009P 2008.010P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ordine Tymovirales
Ordine Tymovirales Classificazione Dominium/Dominio: Acytota o Aphanobionta Gruppo: IV (Virus a ssRNA+) Ordo/Ordine: Tymovirales Il nome deriva dal genere Tymovirus (e dalla famiglia Tymoviridae). Questo è stato scelto perché le altre famiglie costituenti hanno nomi che riflettono i loro virioni flessi (non una caratteristica di tutti i membri del’'ordine). Tymovirales è un ordine di virus proposto nel 2007 e ufficialmente approvato dall’International Committee on Taxonomy of Viruses nel 2009. Quest’ordine possiede un genoma ad RNA a singolo filamento a senso positivo, di conseguenza fanno parte del gruppo IV secondo la classificazione di Baltimore. I virus appartenenti a quest’ordine hanno, come ospite, le piante. I Tymovirales hanno capside senza pericapside, filamentoso e flessibile o isometrico a simmetria icosaedrica e possiedono tutti una poliproteina di replicazione alpha-like. I Tymovirales, hanno una singola molecola di ssRNA senso positivo e sono uniti dalle somiglianze nelle loro poliproteine associate alla replicazione. I virioni all’interno delle famiglie Alphaflexiviridae, Betaflexiviridae e Gammaflexiviridae sono filamenti flessuosi ed hanno solitamente un diametro di 12-13 nm e una lunghezza compresa tra circa 470 e 1000 nm, a seconda del genere. Hanno una simmetria elicoidale e in alcuni generi c’è un crossbanding ben visibile. Quasi tutti i membri hanno una singola proteina di rivestimento (CP) di 18-44 kDa e nel caso dei generi Lolavirus e alcuni Marafivirus, ci sono due proteine strutturali, che sono di forme diverse dallo stesso genere. La più grande proteina codificata è una poliproteina associata alla replicazione di circa 150-250 kDa vicino all'estremità 5' del genoma e che è tradotta direttamente dall’RNA genomico. -
Exploring the Tymovirids Landscape Through Metatranscriptomics Data
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Exploring the tymovirids landscape through metatranscriptomics data 2 Nicolás Bejerman1,2, Humberto Debat1,2 3 4 1 Instituto de Patología Vegetal – Centro de Investigaciones Agropecuarias – Instituto Nacional de 5 Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, 6 Argentina 7 2 Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización 8 Agrícola, Camino 60 Cuadras Km 5,5 (X5020ICA), Córdoba, Argentina 9 10 Corresponding author: Nicolás Bejerman, [email protected] 11 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452586; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 12 Abstract 13 Tymovirales is an order of viruses with positive-sense, single-stranded RNA genomes that mostly infect 14 plants, but also fungi and insects. The number of tymovirid sequences has been growing in the last few 15 years with the extensive use of high-throughput sequencing platforms. Here we report the discovery of 31 16 novel tymovirid genomes associated with 27 different host plant species, which were hidden in public 17 databases. -
Small Hydrophobic Viral Proteins Involved in Intercellular Movement of Diverse Plant Virus Genomes Sergey Y
AIMS Microbiology, 6(3): 305–329. DOI: 10.3934/microbiol.2020019 Received: 23 July 2020 Accepted: 13 September 2020 Published: 21 September 2020 http://www.aimspress.com/journal/microbiology Review Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes Sergey Y. Morozov1,2,* and Andrey G. Solovyev1,2,3 1 A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia 2 Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia 3 Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia * Correspondence: E-mail: [email protected]; Tel: +74959393198. Abstract: Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person -
Virus De La Marchitez Del Tomate (Tomarv) En El Noroeste De México E Identificación De Hospedantes Alternos” TESIS
INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD SINALOA “Presencia del Virus de la marchitez del tomate (ToMarV) en el Noroeste de México e identificación de hospedantes alternos” TESIS QUE PARA OBTENER EL GRADO DE MAESTRÍA EN RECURSOS NATURALES Y MEDIO AMBIENTE PRESENTA ROGELIO ARMENTA CHÁVEZ GUASAVE, SINALOA; MÉXICO DICIEMBRE, 2012 Agradecimientos a proyectos El trabajo de tesis se desarrolló en el Departamento de Biotecnología Agrícola del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa del Instituto Politécnico Nacional (IPN). El presente trabajo fue apoyado económicamente por el IPN y recursos autogenerados. El alumno Rogelio Armenta Chávez fue apoyado con una beca CONACYT con clave 366650 y por el IPN a través de la beca PIFI dentro del proyecto Determinación de la importancia de hospedantes alternos en la dispersión de Ca. Liberibacter sp. en el Norte de México (Con número de registro 20120507). DEDICATORIA A mis padres A ellos por haberme dado la vida y haberse preocupado día a día por mi bienestar y futuro, a ellos les dedicó esta tesis, mi vida y mi ser. Gracias por ser mis padres. A mi novia A mi novia Karen quien siempre me ha apoyado en todo, sin condición alguna; por darme su amor y cariño, por eso gracias. A mi tía Soledad Armenta Por estar a mi lado en los momentos difíciles y haberme dado su apoyo y fuerza para salir adelante día con día. Gracias por eso y por todo lo que venga. A mi hermana Quien ha estado conmigo en las buenas y en las malas a lo largo de mi vida; gracias hermana por ese apoyo tan peculiar que me das. -
Viroze Biljaka 2010
VIROZE BILJAKA Ferenc Bagi Stevan Jasnić Dragana Budakov Univerzitet u Novom Sadu, Poljoprivredni fakultet Novi Sad, 2016 EDICIJA OSNOVNI UDŽBENIK Osnivač i izdavač edicije Univerzitet u Novom Sadu, Poljoprivredni fakultet Trg Dositeja Obradovića 8, 21000 Novi Sad Godina osnivanja 1954. Glavni i odgovorni urednik edicije Dr Nedeljko Tica, redovni profesor Dekan Poljoprivrednog fakulteta Članovi komisije za izdavačku delatnost Dr Ljiljana Nešić, vanredni profesor – predsednik Dr Branislav Vlahović, redovni profesor – član Dr Milica Rajić, redovni profesor – član Dr Nada Plavša, vanredni profesor – član Autori dr Ferenc Bagi, vanredni profesor dr Stevan Jasnić, redovni profesor dr Dragana Budakov, docent Glavni i odgovorni urednik Dr Nedeljko Tica, redovni profesor Dekan Poljoprivrednog fakulteta u Novom Sadu Urednik Dr Vera Stojšin, redovni profesor Direktor departmana za fitomedicinu i zaštitu životne sredine Recenzenti Dr Vera Stojšin, redovni profesor, Univerzitet u Novom Sadu, Poljoprivredni fakultet Dr Mira Starović, naučni savetnik, Institut za zaštitu bilja i životnu sredinu, Beograd Grafički dizajn korice Lea Bagi Izdavač Univerzitet u Novom Sadu, Poljoprivredni fakultet, Novi Sad Zabranjeno preštampavanje i fotokopiranje. Sva prava zadržava izdavač. ISBN 978-86-7520-372-8 Štampanje ovog udžbenika odobrilo je Nastavno-naučno veće Poljoprivrednog fakulteta u Novom Sadu na sednici od 11. 07. 2016.godine. Broj odluke 1000/0102-797/9/1 Tiraž: 20 Mesto i godina štampanja: Novi Sad, 2016. CIP - Ʉɚɬɚɥɨɝɢɡɚɰɢʁɚɭɩɭɛɥɢɤɚɰɢʁɢ ȻɢɛɥɢɨɬɟɤɚɆɚɬɢɰɟɫɪɩɫɤɟɇɨɜɢɋɚɞ -
Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L
Rajarshi Kumar Gaur · Nikolay Manchev Petrov Basavaprabhu L. Patil Mariya Ivanova Stoyanova Editors Plant Viruses: Evolution and Management Plant Viruses: Evolution and Management Rajarshi Kumar Gaur • Nikolay Manchev Petrov • Basavaprabhu L. Patil • M a r i y a I v a n o v a S t o y a n o v a Editors Plant Viruses: Evolution and Management Editors Rajarshi Kumar Gaur Nikolay Manchev Petrov Department of Biosciences, College Department of Plant Protection, Section of Arts, Science and Commerce of Phytopathology Mody University of Science and Institute of Soil Science, Technology Agrotechnologies and Plant Sikar , Rajasthan , India Protection “Nikola Pushkarov” Sofi a , Bulgaria Basavaprabhu L. Patil ICAR-National Research Centre on Mariya Ivanova Stoyanova Plant Biotechnology Department of Phytopathology LBS Centre, IARI Campus Institute of Soil Science, Delhi , India Agrotechnologies and Plant Protection “Nikola Pushkarov” Sofi a , Bulgaria ISBN 978-981-10-1405-5 ISBN 978-981-10-1406-2 (eBook) DOI 10.1007/978-981-10-1406-2 Library of Congress Control Number: 2016950592 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Edna-Host: Detection of Global Plant Viromes Using High Throughput Sequencing
EDNA-HOST: DETECTION OF GLOBAL PLANT VIROMES USING HIGH THROUGHPUT SEQUENCING By LIZBETH DANIELA PENA-ZUNIGA Bachelor of Science in Biotechnology Escuela Politecnica de las Fuerzas Armadas (ESPE) Sangolqui, Ecuador 2014 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May 2020 EDNA-HOST: DETECTION OF GLOBAL PLANT VIROMES USING HIGH THROUGHPUT SEQUENCING Dissertation Approved: Francisco Ochoa-Corona, Ph.D. Dissertation Adviser Committee member Akhtar, Ali, Ph.D. Committee member Hassan Melouk, Ph.D. Committee member Andres Espindola, Ph.D. Outside Committee Member Daren Hagen, Ph.D. ii ACKNOWLEDGEMENTS I would like to express sincere thanks to my major adviser Dr. Francisco Ochoa –Corona for his guidance from the beginning of my journey believing and trust that I am capable of developing a career as a scientist. I am thankful for his support and encouragement during hard times in research as well as in personal life. I truly appreciate the helpfulness of my advisory committee for their constructive input and guidance, thanks to: Dr. Akhtar Ali for his support in this research project and his kindness all the time, Dr. Hassan Melouk for his assistance, encouragement and his helpfulness in this study, Dr. Andres Espindola, developer of EDNA MiFi™, he was extremely helpful in every step of EDNA research, and for his willingness to give his time and advise; to Dr. Darren Hagen for his support and advise with bioinformatics and for his encouragement to develop a new set of research skills. I deeply appreciate Dr. -
A Study of the Interaction Between the Plant Pathogenic Fungus Botrytis Cinerea and the Filamentous Ssrna Mycoviruses Botrytis Virus X and Botrytis Virus F
A study of the interaction between the plant pathogenic fungus Botrytis cinerea and the filamentous ssRNA mycoviruses Botrytis virus X and Botrytis virus F Barbara Boine A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Biological Sciences. The University of Auckland, April 2012. i Abstract The ecological significance of mycoviruses is becoming increasingly recognised, not just for their potential as biocontrol agents but also as driving forces in the evolution and diversification of fungi. Therefore, it is important to understand how mycoviruses and fungi interact on the molecular and biochemical level. To this end the interaction between Botrytis cinerea and the mycoviruses Botrytis virus F and Botrytis virus X was studied. Relative and absolute real time PCR protocols were developed for monitoring the titres of BVX and BVF during transfection studies to monitor changes in virus titre in relation to phenotypic and metabolic changes in the fungal host. Phenotypic changes included severe phenotypical alterations, which were associated with extreme up regulation of carbohydrate, amino acid and lipid metabolism, and induction of stress responses (vacuolisation/cell lysis, increased pigmentation). To study the location and distribution of BVX in infected Botrytis the BVX coat protein was recombinantly expressed in E. coli, BVX specific polyclonal antibodies produced, and protocols developed for the serological detection and visualisation of BVX. Immuno-fluorescence microscopy was used to studying the distribution of BVX within growing Botrytis cultures indicated that the virus is present in aggregates located attached to the cell membrane, the septum, in spores, and in hyphal tips. A combination of light and electron microscopy showed that BVX is often closely associated with cell walls, suggesting that the virus may be moving across the cell wall by altering cell wall composition. -
Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID- 19 Pandemic: A
Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID- 19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. March 2021 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Raphael Freitas de Souza, Faculty of Dentistry, McGill University Paul Allison, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University March 31, 2021 1 Contents Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. .................................................................................................................................. 1 Foreword to the second update ............................................................................................. 4 Introduction ............................................................................................................................. 5 Project goal............................................................................................................................. 5 Specific objectives .................................................................................................................. 6 Methods used to identify and include relevant literature ...................................................... -
Plant Virus–Host Interaction Molecular Approaches and Viral Evolution
Plant Virus–Host Interaction Molecular Approaches and Viral Evolution R.K. Gaur Associate Professor and Head, Department of Science, FASC, Mody Institute of Technology and Science, Lashmangarh, Sikar, India Thomas Hohn Professor Emeritus, Botanical Institute, University of Basel, Basel, Switzerland Pradeep Sharma Senior Scientist (Biotechnology), Directorate of Wheat Research, Karnal, India AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA First published 2014 Copyright © 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. -
Ribes Americanum) with Distinct Genome Features Reshapes Classification in the Tymovirales
viruses Article A Virus in American Blackcurrant (Ribes americanum) with Distinct Genome Features Reshapes Classification in the Tymovirales Thanuja Thekke-Veetil 1, Thien Ho 1, Joseph D. Postman 2, Robert R. Martin 3 ID and Ioannis E. Tzanetakis 1,* ID 1 Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, USA; [email protected] (T.T.-V.); [email protected] (T.H.) 2 National Clonal Germplasm Repository, United States Department of Agriculture, Corvallis, OR 97333, USA; [email protected] 3 Horticultural Crops Research Unit, United States Department of Agriculture, Corvallis, OR 97331, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-479-575-3180; Fax: +1-479-575-7601 Received: 21 April 2018; Accepted: 26 July 2018; Published: 3 August 2018 Abstract: A novel virus with distinct genome features was discovered by high throughput sequencing in a symptomatic blackcurrant plant. The virus, tentatively named Ribes americanum virus A (RAVA), has distinct genome organization and molecular features bridging genera in the order Tymovirales. The genome consists of 7106 nucleotides excluding the poly(A) tail. Five open reading frames were identified, with the first encoding a putative viral replicase with methyl transferase (MTR), AlkB, helicase, and RNA dependent RNA polymerase (RdRp) domains. The genome organization downstream of the replicase resembles that of members of the order Tymovirales with an unconventional triple gene block (TGB) movement protein arrangement with none of the other four putative proteins exhibiting significant homology to viral proteins. Phylogenetic analysis using replicase conserved motifs loosely placed RAVA within the Betaflexiviridae.