Purification of N-Acetyllactosamine-Binding

Total Page:16

File Type:pdf, Size:1020Kb

Purification of N-Acetyllactosamine-Binding Journal of Reproduction and Development, Vol. 58, No 1, 2012 —Original Article — Purification of N-acetyllactosamine-binding Activity from the Porcine Sperm Membrane: Possible Involvement of an ADAM Complex in the Carbohydrate-binding Activity of Sperm Etsuko MORI1), Hiroyuki FUKUDA2), Shinobu ImaJOH-Ohmi2), Tsuneatsu MORI1) and Seiichi TAKasaKI1) 1)Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan 2)Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan Abstract. Although the importance of carbohydrate recognition by sperm during egg zona pellucida binding has been widely reported, the sperm molecular species that recognize the carbohydrates are poorly characterized. Our previous cytochemical study indicated that two kinds of carbohydrate-binding proteins are expressed on porcine sperm heads—one recognizes N-acetyllactosamine (Galβ1-4GlcNAc-), and the other recognizes the Lewis X structure (Galβ1-4(Fucα1-3) GlcNAc-). For this report, we used proteomic techniques to characterize the sperm proteins that bind N-acetyllactosamine. Porcine sperm plasma membrane was solubilized with a detergent solution and subjected to sequential chromatography with dextran sulfate agarose, affinity, and hydroxyapatite, and the binding activities in the eluates were monitored by a solid-phase binding assay. The tryptic peptides of two proteins most likely associated with the binding activities were subjected to tandem mass spectrometry sequencing. A subsequent database search identified one of the two proteins as predicted disintegrin and metalloprotease domain-containing protein 20-like (XP_003128672). The other protein was identified as disintegrin and metalloprotease domain-containing protein 5 (AB613817) by database searches for homologous amino acid sequences, cDNA cloning, nucleotide sequencing and nucleotide database searches. Furthermore, two-dimensional blue native/SDS-PAGE demonstrated that they formed a variety of non-covalent complexes. Therefore, these ADAM complexes probably are responsible for the N-acetyllactosamine-binding activity. An affinity-purified fraction containing these ADAM complexes showed zona pellucida-binding activity, though the activity was relatively weak, and the presence of another zona pellucida-binding protein that probably works in concert with these ADAM complexes was suggested. Immunofluorescence testing suggested that ADAM20-like was localized on the anterior part of the sperm plasma membrane. Key words: ADAM, Carbohydrate-binding, Sperm, Zona pellucida (J. Reprod. Dev. 58: 117–125, 2012) n mammals, sperm interact with specific carbohydrate chains glycodelin-A as well as to the ZP [18]; none of these, however, is Ifound on the zona pellucida (ZP) of eggs, and these interac- widely accepted as a sperm carbohydrate-binding protein involved tions seem to be species-selective [1]. Extensive analyses of ZP in ZP binding. We previously characterized porcine ZP oligosac- carbohydrate chains have been performed in pigs [2–5], mice [6, charides [2, 3, 5]. Using those results, we then determined which 7] and cattle [8], and the involvement of N-acetyllactosamine and oligosaccharides were recognized by intact porcine sperm and an Lewis X moieties on the ZP in sperm binding was reported in isolated sperm plasma membrane [9, 19]. We found that porcine pigs [9, 10] and mice [11, 12]. For cattle, the α-mannosyl residues sperm recognizes N-acetyllactosamine-bearing oligosaccharides of ZP N-glycans are involved in binding [13]. Conversely, little is with or without sialic acid present at the non-reducing ends of known about which sperm proteins recognize ZP carbohydrates. N-glycans. After removal of the galactose residues, the sperm no Murine sperm galactosyltransferase has been the most extensively longer recognized the oligosaccharides. The binding of sperm to studied carbohydrate-binding protein [14], but it appears unlikely the ZP was inhibited by asialo-N-glycans from fetuin. Additionally, that it participates in the initial gamete adhesion process [15]. porcine sperm recognized a Lewis X-bearing oligosaccharide. The Other carbohydrate-binding proteins have been implicated, i.e., sperm protein(s) that recognizes N-acetyllactosamine is distinct rat galactosyl receptor, which is identical to the rat hepatic lectin from the one(s) that recognizes the Lewis X moiety because the receptor 2/3 [16], porcine AWN-1, which interacts with core 1 binding of the sperm membrane to an N-acetyllactosamine-bearing O-glycans [17], and human fucosyltransferase, which binds to probe was not inhibited by a Lewis X-bearing probe and vice versa. The binding of sperm to these carbohydrates was calcium ion-independent, which indicated that the carbohydrate-binding Received: July 27, 2011 protein(s) is not related to the hepatic asialoglycoprotein receptor Accepted: October 3, 2011 or to selectins. For the study reported herein, we identified sperm Published online in J-STAGE: November 4, 2011 ©2012 by the Society for Reproduction and Development membrane proteins that probably have N-acetyllactosamine-binding Correspondence: E Mori (e-mail: [email protected]) activity as disintegrin and metalloprotease domain-containing 118 MORI et al. protein 20-like (ADAM20-like) and disintegrin and metallopro- 7.4, containing 1.6 M NaCl, 30 mM MgCl2 and 50 mM KCl) was tease domain-containing protein 5 (ADAM5) by a combination of added to the suspension to restore isotonicity. The homogenized column chromatography, a solid-phase binding assay and proteomic cell suspension was centrifuged at 3000 × g (10 min, 4 C), and then techniques. ZP-binding activity and localization of these proteins the supernatant was centrifuged at 5,000 × g (10 min, 4 C). The was elucidated. obtained supernatant was ultracentrifuged at 100,000 × g (30 min, 4 C), and the sperm plasma membrane pellet was collected. The Materials and Methods plasma membrane was resuspended in Hepes-buffered saline con- taining 0.8 mM PMSF and 10 mM EDTA and reultracentrifuged Preparation of glycoprotein probes and glycoprotein-coupled at 230,000 × g (30 min, 4 C). This washing step was repeated Sepharose 4B three times. The membrane thus obtained (50 mg wet weight) was Asialo-α1-acid glycoprotein (As-α1-AGP) was prepared by mild incubated in 10 mM Hepes-buffered saline, pH 7.8, containing 1% acid hydrolysis of human α1-acid glycoprotein (Sigma-Aldrich, St. (w/v) Triton X-100, 0.5% (w/v) n-octyl-β-D-thioglucoside, 10 mM Louis, MO, USA) in ~20 mM HCl (pH 2) at 100 C for ~30 min while EDTA and protease inhibitor cocktail (Complete, Mini, Roche, monitoring the release of sialic acid by thin layer chromatography. Indianapolis, IN, USA) on ice for 60 min and then centrifuged at As-α1-AGP was biotinylated, and an aliquot was subjected to 100,000 × g for 60 min. The supernatant was subjected to dextran β-galactosidase digestion [11] to obtain the asialo-agalacto-α1-acid sulfate agarose column chromatography (5 K, 3 ml, GIBCO BRL, glycoprotein (AsAg-α1-AGP) probe. For affinity chromatography Karlsruhe, Germany). The resin was equilibrated with buffer A matrixes, As-α1-AGP was conjugated to CNBr-activated Sepharose (10 mM Hepes, pH 7.8, 10 mM EDTA, 0.1% (w/v) Triton X-100) 4B (GE Healthcare, Buckinghamshire, UK) as described by the that contained 0.15 M NaCl and, after loading the sample, was manufacturer, and an aliquot was subjected to β-galactosidase washed with 20 ml of this buffer. Bound protein was eluted with digestion to prepare AsAg-α1-AGP-coupled Sepharose. buffer A containing 0.4 M NaCl and then with buffer A contain- ing 1.2 M NaCl. Fractions of 2 ml were collected. The fraction Solid-phase binding assays that had the greatest N-acetyllactosamine-binding activity was N-acetyllactosamine-binding activity was monitored through- concentrated by a Nanosep ultracentrifugation device (10 K, Pall out the purification process by the following assay. Samples of Life Sciences, Port Washington, NY, USA) into 100 µl, and NaCl chromatographic eluates were incubated with Bio-Beads SM-2 was adjusted to 0.5 M. Half of the sample was chromatographed for detergent removal (100-fold excess with respect to detergent, through a column of As-α1-AGP-coupled Sepharose, and the other w/w, Bio-Rad Laboratories, Hercules, CA, USA) for 2 h at room half was chromatographed through a column of AsAg-α1-AGP- temperature with vigorous shaking. Each recovered supernatant coupled Sepharose. Each column had a volume of 1 ml. The resins was added into a well of an EIA plate. N-acetyllactosamine-binding were initially equilibrated with buffer A containing 0.5 M NaCl. activity was detected using a biotin-labeled As-α1-AGP probe (10 µg/ Fractions (0.5 ml) were collected at a flow rate of 0.1 ml/min first ml). A biotin-labeled AsAg-α1-AGP probe (10 µg/ml) served as with 5 ml of buffer A containing 0.5 M NaCl and then with 2 ml the control. A sample in a well was incubated with each probe for of 0.1 M glycine-Cl, pH 2.5, 0.1% (w/v) Triton-X 100. Fractions 45 min and then incubated for 30 min with horseradish peroxidase from the As-α1-AGP-coupled Sepharose chromatography that had conjugated avidin, both at 4 C. For blocking and dilution, 10 mM N-acetyllactosamine-binding activity were pooled, concentrated, Tris-buffered saline containing 2% casein and 0.05% (w/v) Tween and buffer exchanged by a Nanosep ultracentrifugation device 20 was used. The intensity of horseradish peroxidase reaction was (10 K) with 10 mM sodium phosphate,
Recommended publications
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Adherence of Mycoplasma Gallisepticum to Human Erythrocytes M
    INFECTION AND IMMUNITY, Aug. 1978, p. 365-372 Vol. 21, No. 2 0019-9567/78/0021-0365$02.00/0 Copyright i 1978 American Society for Microbiology Printed in U.S.A. Adherence of Mycoplasma gallisepticum to Human Erythrocytes M. BANAI,1 I. KAHANE,' S. RAZINl* AND W. BREDT2 Biomembrane Research Laboratory, Department of Clinical Microbiology, The Hebrew University- Hadassah Medical School, Jerusalem, Israel,' and Institute for General Hygiene and Bacteriology, Center for Hygiene, Albert-Ludwigs- Universitat, D- 7800 Freiburg, West Germany Received for publication 7 February 1978 Pathogenic mycoplasmas adhere to and colonize the epithelial lining of the respiratory and genital tracts ofinfected animals. An experimental system suitable for the quantitative study of mycoplasma adherence has been developed by us. The system consists of human erythrocytes (RBC) and the avian pathogen Mycoplasma gallisepticum, in which membrane lipids were labeled. The amount of mycoplasma cells attached to the RBC, which was determined according to radioactivity measurements, decreased on increasing the pH or ionic strength of the attachment mixture. Attachment followed first-order kinetics and depended on temperature. The mycoplasma cell population remaining in the supernatant fluid after exposure to RBC showed a much poorer ability to attach to RBC during a second attachment test, indicating an unequal distribution of binding sites among cells within a given population. The gradual removal of sialic acid residues from the RBC by neuraminidase was accompanied by a decrease in mycoplasma attachment. Isolated glycophorin, the RBC membrane glycoprotein carrying almost all the sialic acid moieties ofthe RBC, inhibited M. gallisepticum attachment, whereas asialoglycophorin and sialic acid itself were very poor inhibitors of attachment.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Prospects for Using Expression Patterns of Paramyxovirus Receptors As Biomarkers for Oncolytic Virotherapy
    cancers Review Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy Olga V. Matveeva 1,* and Svetlana A. Shabalina 2,* 1 Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA 2 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA * Correspondence: [email protected] (O.V.M.); [email protected] (S.A.S.) Received: 27 October 2020; Accepted: 1 December 2020; Published: 5 December 2020 Simple Summary: Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract: The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors.
    [Show full text]
  • Remodelling and Glycoconjugation of Granulocyte Colony Stimulating Factor (G-CSF)
    (19) *EP002042196A2* (11) EP 2 042 196 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.04.2009 Bulletin 2009/14 A61K 47/48 (2006.01) C07K 1/00 (2006.01) C07K 1/13 (2006.01) A61K 38/14 (2006.01) (2006.01) (2006.01) (21) Application number: 09000818.6 A61K 38/16 A61K 38/24 A61K 38/26 (2006.01) A61K 38/28 (2006.01) (2006.01) (2006.01) (22) Date of filing: 09.10.2002 A61K 38/29 A61K 38/30 A61K 38/43 (2006.01) C07K 9/00 (2006.01) C07K 14/475 (2006.01) C07K 14/59 (2006.01) C07K 14/61 (2006.01) C07K 14/525 (2006.01) C07K 14/56 (2006.01) C07K 14/565 (2006.01) C12N 9/64 (2006.01) C12N 9/22 (2006.01) C07K 19/00 (2006.01) C07K 14/79 (2006.01) C07H 19/10 (2006.01) (84) Designated Contracting States: • Zopf, David AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Wayne, PA 19087 (US) IE IT LI LU MC NL PT SE SK TR • Bayer, Robert San Diego, CA 92122 (US) (30) Priority: 10.10.2001 US 328523 P • Bowe, Caryn 19.10.2001 US 344692 P Doylestown, PA 18901 (US) 28.11.2001 US 334233 P • Hakes, David 28.11.2001 US 334301 P Willow Grove, PA 19090 (US) 07.06.2002 US 387292 P • Chen, Xi 25.06.2002 US 391777 P Lansdale, PA 19446 (US) 17.07.2002 US 396594 P 16.08.2002 US 404249 P (74) Representative: Watkins, Charlotte Helen 28.08.2002 US 407527 P Harrison Goddard Foote Belgrave Hall (62) Document number(s) of the earlier application(s) in Belgrave Street accordance with Art.
    [Show full text]
  • 1 Novel Expression Signatures Identified by Transcriptional Analysis
    ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009.
    [Show full text]
  • Functional Role of the Overexpression of the Myelin and Lymphocyte
    Functional role of the overexpression of the myelin and lymphocyte protein MAL in Schwann cells Inauguraldissertation Zur Erlangung der Würde eines Doktors der Philosophie Vorgelegt der Philosophisch‐Naturwissenschaftlichen Fakultät der Universität Basel von Daniela Schmid aus Ramsen (SH) Basel, 2013 Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von: Prof. M.A. Rüegg (Fakultätsverantwortlicher) Prof. N. Schaeren-Wiemers (Dissertationsleiterin) Prof. J. Kapfhammer (Korreferent) Basel, den 18. Juni 2013 Prof. J. Schibler (Dekan) To Michael 1. Acknowledgments 1. ACKNOWLEDGMENTS ................................................................................................................................ 6 2. ABBREVIATIONS ......................................................................................................................................... 7 3. SUMMARY ............................................................................................................................................... 10 4. INTRODUCTION ........................................................................................................................................ 11 4.1. THE NERVOUS SYSTEM AND MYELIN SHEATH COMPOSITION ..................................................................................... 11 4.2. SCHWANN CELL ORIGIN AND LINEAGE ................................................................................................................. 12 4.3. THE FUNCTIONAL ROLE OF THE BASAL LAMINA .....................................................................................................
    [Show full text]
  • Functional Significance of Glycoprotein Clearance by The
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) January 2009 Functional Significance of Glycoprotein Clearance by the Asialoglycoprotein Receptor and the Mannose/GalNAc-4-SO4 Receptor Lindsay Steirer Taylor Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Steirer Taylor, Lindsay, "Functional Significance of Glycoprotein Clearance by the Asialoglycoprotein Receptor and the Mannose/ GalNAc-4-SO4 Receptor" (2009). All Theses and Dissertations (ETDs). 333. https://openscholarship.wustl.edu/etd/333 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Molecular Cell Biology Dissertation Examination Committee: Jacques U. Baenziger, Chair Stuart Kornfeld Timothy Ley Kelle Moley Douglas Tollefsen Lijuan Zhang Functional Significance of Glycoprotein Clearance by the Asialoglycoprotein Receptor and the Mannose/GalNAc-4-SO4 Receptor by Lindsay Michelle Steirer Taylor A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2009 Saint Louis, MO Acknowledgments I thank Jacques Baenziger for his support, insight, persistence and assistance on my often difficult and confusing, yet fascinating project, and for being a great friend. I would like to thank my current and past lab members, Mary Beranek, Dorothy Fiete, Yiling Mi, and Eric Park for their continued support through my scientific and life journey.
    [Show full text]
  • Insights Into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma
    pharmaceuticals Review Insights into an Immunotherapeutic Approach to Combat Multidrug Resistance in Hepatocellular Carcinoma Aswathy R. Devan 1,†, Ayana R. Kumar 1,†, Bhagyalakshmi Nair 1, Nikhil Ponnoor Anto 2,‡ , Amitha Muraleedharan 2,‡ , Bijo Mathew 3, Hoon Kim 4,* and Lekshmi R. Nath 1,* 1 Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; [email protected] (A.R.D.); [email protected] (A.R.K.); [email protected] (B.N.) 2 The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; [email protected] (N.P.A.); [email protected] (A.M.) 3 Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India; [email protected] 4 Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea * Correspondence: [email protected] (H.K.); [email protected] (L.R.N.) † These authors contributed equally. ‡ These authors contributed equally. Abstract: Hepatocellular carcinoma (HCC) has emerged as one of the most lethal cancers worldwide because of its high refractoriness and multi-drug resistance to existing chemotherapies, which leads to poor patient survival. Novel pharmacological strategies to tackle HCC are based on oral multi-kinase Citation: Devan, A.R.; Kumar, A.R.; inhibitors like sorafenib; however, the clinical use of the drug is restricted due to the limited survival Nair, B.; Anto, N.P.; Muraleedharan, rate and significant side effects, suggesting the existence of a primary or/and acquired drug-resistance A.; Mathew, B.; Kim, H.; Nath, L.R.
    [Show full text]
  • Decrease of Sialic Acid Residues As an Eat-Me Signal on the Surface of Apoptotic Lymphocytes
    Research Article 3347 Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes Hanna Marie Meesmann1, Eva-Marie Fehr1, Sonja Kierschke1, Martin Herrmann2, Rostyslav Bilyy3, Petra Heyder1, Norbert Blank1, Stefan Krienke1, Hanns-Martin Lorenz1 and Martin Schiller1,* 1Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany 2Institute for Clinical Immunology and Rheumatology, Department of Internal Medicine 3, University Hospital Erlangen, 91054 Erlangen, Germany 3Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine *Author for correspondence ([email protected]) Accepted 14 June 2010 Journal of Cell Science 123, 3347-3356 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.066696 Summary The silent clearance of apoptotic cells is essential for cellular homeostasis in multicellular organisms, and several mediators of apoptotic cell recognition have been identified. However, the distinct mechanisms involved are not fully deciphered yet. We analyzed alterations of the glycocalyx on the surfaces of apoptotic cells and its impact for engulfment. After apoptosis induction of lymphocytes, a decrease of 2,6-terminal sialic acids and sialic acids in 2,3-linkage with galactose was observed. Similar changes were to be found on the surface of apoptotic membrane blebs released during early stages of apoptosis, whereas later released blebs showed no impaired, but rather an increased, exposure of sialic acids. We detected an exposure of fucose residues on the surface of apoptotic-cell-derived membrane blebs. Cleavage by neuraminidase of sialic acids, as well as lectin binding to sialic acids on the surfaces, enhanced the engulfment of apoptotic cells and blebs.
    [Show full text]