<<

Some Complex Theory

Holomophicity Meromorphicity f 71 him flat f zo f Q Q holomorphic 2 to Z exists countably many poles Epi where ftp.ul x

f Z log z rett t floor iotas

logarithmic derivative 7 log f fl f 1 0 f z Z Zo lez g t f Z ta z zo n r non vanishing around to ft I n r f 2 Zo t r Argument Principle

xp Ifk 2T res P tEn

Hf IT'LL zeroes of f poles of f Modular forms Definition First Examples Notation Let Te S 27 e Tbd ad be I a bcode27

Let IH ze Im Cz o Cad Definition f k Itm G modularofweight f VI flat feetd 0 i k 1 ft f f to ft C 1 fto flz C Litmus Test for Modularity S T SLID S L T f l

n t E.is 9 15 i nmueeuiii 1 fi I I

Example

let k 4 k even

tm tCmH a Cm k go

Ey Eg generate all modular forms of positive weight The Valence formula i.e the base case

Thmi Let F and D be as above and let f be a nonzero of weight k Then

2 t fttzVLffttJVeaiilslHtIEy.y kH

D modular Mk Sh forms of weight k 1st that goal prove Mk Shad is finite dimensional

k 4 f My 1 12711 1 B Idina Can only vanish at eat

K G I 2771 1 dimeMolSbl 1 Can only at I

f k lo I 6 The Valence formula i.e the base case

Thmi Let F and D be as above and let f be a nonzero modular form of weight k Then

f t Vz f t Vezails If t klf

First Dimensionality Results O K dim Mk Sh D odd k 0241b 8 10 The Valence formula i.e the base case

Thmi Let F and D be as above and let f be a nonzero modular form of weight k Then

2 fIttzVzlftttJVezailslHtIEy.y kH 11 I

First Dimensionality Results dimacilkeshlah 89 74 o

The Dimension formula

4 4 k 2 lawd121 dime Mk1541271 4412 I k 2 lawd 12 2 Eyes LA 1728

M 54271 Sk Sbl forms f f w The Valence formula i.e the base case

Thmi Let F and D be as above and let f be a nonzero modular form of weight k Then

f t Vz f t Vez.is Ht V f y

First Dimensionality Results dimacilkeshlah Ii D't w

The Dimension formula

4 4 k 2 lawd121 dime Mk1541271 4412 I k 2 lawd 12

Basis of MkCS D b Mk Sh D Cya E 4atbb ki aibe23,03

all Ey Eg modular forms of positive or zoo of weight

G Cx y Proof of Valence on Choice of Contour 1 E a al ft.rs damn taxi I 1 I 1 i i i i 1 to o b f l pyob o b f l Yz O k l l Yz 0 112 I

1 zeroes c t case e i e'T Case 2 A Zero d on the Vertical Lives f modular from 1 Vplf C pent D 4 Brief Proof of Valence Surfaces

Definition of Riemann

ie

1 Collection of charts which map biholomophically to an in 2 You holomorphic 4 Brief Proof of Valence Riemann Surfaces

Definition of

I mom

Stereographic Projection

In

F 4 Brief Proof of Valence Riemann Surfaces

Definition of Riemann Surface

homeomorphism I mom

Stereographic Projection

a

OF FUE becomes a Riemann surface called Charts X11

i g

I N l l 1 4 Brief Proof of Valence Riemann Surfaces R m surface Symmetric k forms on X I X fflzl IC.dz dzmfcz Ldzlk Cz f is www.rphieonx I divlw ordxlfl.fr

deg Cd'wlwH od H wtf Volg Riemann Roch Theorem t g

deg Cd'wlwH 2g 2 ok

Fixed forms of SCH X under SLID For f c Mk Sh D Az z is fixed under transformation

by SLzC2 and so is a k form on X

Then there exists a form Wf on XLI such that f z Wfo f Hk where IH X l T SLIDE 062 1 x OH Cf 4 Brief Proof of Valence Riemann Surfaces

Symmetric k forms on X X

NCH X fczlfdz.lk f meromorphic on X

din w ord If X w f G lolz

degldivlw E ordxHI LEX

Riemann Rock Theorem

deg div w kC2g 2

Form on IH Form on X l for f E MkCS D Az z is fixed under transformation

by SLzC2 and so is a k form on X

Then there exists a form wf on Stk x l such that Wfo f f z Hk where IH X l T SLIDE The Valence formula

06 1 x ord u.CH Ida KISEI in Igodetails f 143 a e2isits od Cf k e A degldivlw 2K

2K adsit K JordezailsHI Kk

H Kya E ordx If XE X K 4cxHEx e g

Lord If t