Lectures on Modular Forms 1St Edition Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on Modular Forms 1St Edition Ebook LECTURES ON MODULAR FORMS 1ST EDITION PDF, EPUB, EBOOK Joseph J Lehner | 9780486821405 | | | | | Lectures on Modular Forms 1st edition PDF Book Main article: Atkin—Lehner theory. A First Course in Modular Forms is written for beginning graduate students and advanced undergraduates. Siegel modular forms are associated to larger symplectic groups in the same way in which classical modular forms are associated to SL 2, R ; in other words, they are related to abelian varieties in the same sense that classical modular forms which are sometimes called elliptic modular forms to emphasize the point are related to elliptic curves. Five points determine a conic Projective line Rational normal curve Riemann sphere Twisted cubic. We call this lattice L n. Then E k is a modular form of weight k. Categories : Modular forms Analytic number theory Special functions. From Wikipedia, the free encyclopedia. Please help improve this section by adding citations to reliable sources. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. What is more, it can be endowed with the structure of a Riemann surface , which allows one to speak of holo- and meromorphic functions. Topics in algebraic curves. Main article: Cusp form. If we allow denominators rational functions instead of polynomials , we can let F be the ratio of two homogeneous polynomials of the same degree. Counting points on elliptic curves Division polynomials Hasse's theorem on elliptic curves Mazur's torsion theorem Modular elliptic curve Modularity theorem Mordell—Weil theorem Nagell—Lutz theorem Supersingular elliptic curve Schoof's algorithm Schoof —Elkies—Atkin algorithm. Automorphic forms extend the notion of modular forms to general Lie groups. Rings of modular forms of congruence subgroups of SL 2, Z are finitely generated due to a result of Pierre Deligne and Michael Rapoport. Modular forms can also be interpreted as sections of a specific line bundles on modular varieties. The opening chapters define modular forms, develop their most important properties, and introduce the Hecke modular forms. Unsourced material may be challenged and removed. The presence of 24 is related to the fact that the Leech lattice has 24 dimensions. Overview This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Acnode Crunode Cusp Delta invariant Tacnode. About this Textbook This book introduces the theory of modular forms with an eye toward the Modularity Theorem:All rational elliptic curves arise from modular forms. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. Namespaces Article Talk. What is more, it can be endowed with the structure of a Riemann surface , which allows one to speak of holo- and meromorphic functions. The modular functions constitute the field of functions of the Riemann surface, and hence form a field of transcendence degree one over C. One might ask, since the homogeneous polynomials are not really functions on P V , what are they, geometrically speaking? Because there is only one modular form of weight 8 up to scalar multiplication,. Dual curve Polar curve Smooth completion. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout. This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Sign in to Purchase Instantly. More generally, there are formulas for bounds on the weights of generators of the ring of modular forms and its relations for arbitrary Fuchsian groups. A modular form of weight k for the modular group. Suitable for advanced undergraduates and graduate students in mathematics, the treatment starts with classical material and leads gradually to modern developments. Recommended for you. Elliptic function Elliptic integral Fundamental pair of periods Modular form. De Franchis theorem Faltings's theorem Hurwitz's automorphisms theorem Hurwitz surface Hyperelliptic curve. A Short Course in Automorphic Functions. Main article: Cusp form. A modular form can equivalently be defined as a function F from the set of lattices in C to the set of complex numbers which satisfies certain conditions:. Show all. Counting points on elliptic curves Division polynomials Hasse's theorem on elliptic curves Mazur's torsion theorem Modular elliptic curve Modularity theorem Mordell—Weil theorem Nagell—Lutz theorem Supersingular elliptic curve Schoof's algorithm Schoof—Elkies—Atkin algorithm. A cusp form is a modular form with a zero constant coefficient in its Fourier series. From Wikipedia, the free encyclopedia. Lectures on Modular Forms 1st edition Writer John Milnor observed that the dimensional tori obtained by dividing R 16 by these two lattices are consequently examples of compact Riemannian manifolds which are isospectral but not isometric see Hearing the shape of a drum. Main article: Cusp form. Modular forms can also be profitably approached from this geometric direction, as sections of line bundles on the moduli space of elliptic curves. Modular forms can also be profitably approached from this geometric direction, as sections of line bundles on the moduli space of elliptic curves. Important examples are, for any positive integer N , either one of the congruence subgroups. Graduate Texts in Mathematics , This book introduces the theory of modular forms with an eye toward the Modularity Theorem:All rational elliptic curves arise from modular forms. Eisenstein Series Pages Diamond, Fred et al. Buy Hardcover. Birkhoff—Grothendieck theorem Stable vector bundle Vector bundles on algebraic curves. The dimensions of these spaces of modular forms can be computed using the Riemann—Roch theorem [2]. In mathematics , a modular form is a complex analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group , and also satisfying a growth condition. Written in a very comprehensible, detailed, lucid and instructive manner, this unique textbook is widely self-contained and perfectly suitable for self-study by beginners. Main article: Cusp form. The Dedekind eta function is defined as. Add to Wishlist. From Wikipedia, the free encyclopedia. Again, modular forms that vanish at all cusps are called cusp forms for G. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Hidden categories: Articles with short description Short description is different from Wikidata Articles needing additional references from October All articles needing additional references. For example, the j-invariant j z of an elliptic curve, regarded as a function on the set of all elliptic curves, is a modular function. Product Description Product Details This concise volume presents an expository account of the theory of modular forms and its application to number theory and analysis. This is also referred to as the q -expansion of f. Main article: Atkin—Lehner theory. Modular form theory is a special case of the more general theory of automorphic forms , and therefore can now be seen as just the most concrete part of a rich theory of discrete groups. The so-called theta function. Divisors on curves Abel—Jacobi map Brill—Noether theory Clifford's theorem on special divisors Gonality of an algebraic curve Jacobian variety Riemann—Roch theorem Weierstrass point Weil reciprocity law. A modular form for G of weight k is a function on H satisfying the above functional equation for all matrices in G , that is holomorphic on H and at all cusps of G. October Learn how and when to remove this template message. Please help improve this section by adding citations to reliable sources. These are points at the boundary of H , i. From Wikipedia, the free encyclopedia. Divisors on curves Abel—Jacobi map Brill—Noether theory Clifford's theorem on special divisors Gonality of an algebraic curve Jacobian variety Riemann—Roch theorem Weierstrass point Weil reciprocity law. It does not require background in algebraic number theory or algebraic geometry, and it contains exercises throughout. Hecke Operators Pages Diamond, Fred et al. Five points determine a conic Projective line Rational normal curve Riemann sphere Twisted cubic. Please help improve this section by adding citations to reliable sources. Modular integrals of weight k are meromorphic functions on the upper half plane of moderate growth at infinity which fail to be modular of weight k by a rational function. Lectures on Modular Forms 1st edition Reviews A Brief Introduction to Theta Functions. For example, the spaces M k G and S k G are finite-dimensional, and their dimensions can be computed thanks to the Riemann-Roch theorem in terms of the geometry of the G -action on H. When the weight k is zero, it can be shown using Liouville's theorem that the only modular forms are constant functions. Typically it is not compact, but can be compactified by adding a finite number of points called cusps. For example, the spaces M k G and S k G are finite-dimensional, and their dimensions can be computed thanks to the Riemann- Roch theorem in terms of the geometry of the G -action on H. More generally, there are formulas for bounds on the weights of generators of the ring of modular forms and its relations for arbitrary Fuchsian groups. If we allow denominators rational functions instead of polynomials , we can let F be the ratio of two homogeneous polynomials of the same degree. Dimension Formulas Pages Diamond, Fred et al. We call this lattice L n. Five points determine a conic Projective line Rational normal curve Riemann sphere Twisted cubic.
Recommended publications
  • Arxiv:1912.10980V2 [Math.AG] 28 Jan 2021 6
    Automorphisms of real del Pezzo surfaces and the real plane Cremona group Egor Yasinsky* Universität Basel Departement Mathematik und Informatik Spiegelgasse 1, 4051 Basel, Switzerland ABSTRACT. We study automorphism groups of real del Pezzo surfaces, concentrating on finite groups acting with invariant Picard number equal to one. As a result, we obtain a vast part of classification of finite subgroups in the real plane Cremona group. CONTENTS 1. Introduction 2 1.1. The classification problem2 1.2. G-surfaces3 1.3. Some comments on the conic bundle case4 1.4. Notation and conventions6 2. Some auxiliary results7 2.1. A quick look at (real) del Pezzo surfaces7 2.2. Sarkisov links8 2.3. Topological bounds9 2.4. Classical linear groups 10 3. Del Pezzo surfaces of degree 8 10 4. Del Pezzo surfaces of degree 6 13 5. Del Pezzo surfaces of degree 5 16 arXiv:1912.10980v2 [math.AG] 28 Jan 2021 6. Del Pezzo surfaces of degree 4 18 6.1. Topology and equations 18 6.2. Automorphisms 20 6.3. Groups acting minimally on real del Pezzo quartics 21 7. Del Pezzo surfaces of degree 3: cubic surfaces 28 Sylvester non-degenerate cubic surfaces 34 7.1. Clebsch diagonal cubic 35 *[email protected] Keywords: Cremona group, conic bundle, del Pezzo surface, automorphism group, real algebraic surface. 1 2 7.2. Cubic surfaces with automorphism group S4 36 Sylvester degenerate cubic surfaces 37 7.3. Equianharmonic case: Fermat cubic 37 7.4. Non-equianharmonic case 39 7.5. Non-cyclic Sylvester degenerate surfaces 39 8. Del Pezzo surfaces of degree 2 40 9.
    [Show full text]
  • Real Rank Two Geometry Arxiv:1609.09245V3 [Math.AG] 5
    Real Rank Two Geometry Anna Seigal and Bernd Sturmfels Abstract The real rank two locus of an algebraic variety is the closure of the union of all secant lines spanned by real points. We seek a semi-algebraic description of this set. Its algebraic boundary consists of the tangential variety and the edge variety. Our study of Segre and Veronese varieties yields a characterization of tensors of real rank two. 1 Introduction Low-rank approximation of tensors is a fundamental problem in applied mathematics [3, 6]. We here approach this problem from the perspective of real algebraic geometry. Our goal is to give an exact semi-algebraic description of the set of tensors of real rank two and to characterize its boundary. This complements the results on tensors of non-negative rank two presented in [1], and it offers a generalization to the setting of arbitrary varieties, following [2]. A familiar example is that of 2 × 2 × 2-tensors (xijk) with real entries. Such a tensor lies in the closure of the real rank two tensors if and only if the hyperdeterminant is non-negative: 2 2 2 2 2 2 2 2 x000x111 + x001x110 + x010x101 + x011x100 + 4x000x011x101x110 + 4x001x010x100x111 −2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111 (1) −2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101 ≥ 0: If this inequality does not hold then the tensor has rank two over C but rank three over R. To understand this example geometrically, consider the Segre variety X = Seg(P1 × P1 × P1), i.e. the set of rank one tensors, regarded as points in the projective space P7 = 2 2 2 7 arXiv:1609.09245v3 [math.AG] 5 Apr 2017 P(C ⊗ C ⊗ C ).
    [Show full text]
  • 13 Elliptic Function
    13 Elliptic Function Recall that a function g : C → Cˆ is an elliptic function if it is meromorphic and there exists a lattice L = {mω1 + nω2 | m, n ∈ Z} such that g(z + ω)= g(z) for all z ∈ C and all ω ∈ L where ω1,ω2 are complex numbers that are R-linearly independent. We have shown that an elliptic function cannot be holomorphic, the number of its poles are finite and the sum of their residues is zero. Lemma 13.1 A non-constant elliptic function f always has the same number of zeros mod- ulo its associated lattice L as it does poles, counting multiplicites of zeros and orders of poles. Proof: Consider the function f ′/f, which is also an elliptic function with associated lattice L. We will evaluate the sum of the residues of this function in two different ways as above. Then this sum is zero, and by the argument principle from complex analysis 31, it is precisely the number of zeros of f counting multiplicities minus the number of poles of f counting orders. Corollary 13.2 A non-constant elliptic function f always takes on every value in Cˆ the same number of times modulo L, counting multiplicities. Proof: Given a complex value b, consider the function f −b. This function is also an elliptic function, and one with the same poles as f. By Theorem above, it therefore has the same number of zeros as f. Thus, f must take on the value b as many times as it does 0.
    [Show full text]
  • Nonintersecting Brownian Motions on the Unit Circle: Noncritical Cases
    The Annals of Probability 2016, Vol. 44, No. 2, 1134–1211 DOI: 10.1214/14-AOP998 c Institute of Mathematical Statistics, 2016 NONINTERSECTING BROWNIAN MOTIONS ON THE UNIT CIRCLE By Karl Liechty and Dong Wang1 DePaul University and National University of Singapore We consider an ensemble of n nonintersecting Brownian particles on the unit circle with diffusion parameter n−1/2, which are condi- tioned to begin at the same point and to return to that point after time T , but otherwise not to intersect. There is a critical value of T which separates the subcritical case, in which it is vanishingly un- likely that the particles wrap around the circle, and the supercritical case, in which particles may wrap around the circle. In this paper, we show that in the subcritical and critical cases the probability that the total winding number is zero is almost surely 1 as n , and →∞ in the supercritical case that the distribution of the total winding number converges to the discrete normal distribution. We also give a streamlined approach to identifying the Pearcey and tacnode pro- cesses in scaling limits. The formula of the tacnode correlation kernel is new and involves a solution to a Lax system for the Painlev´e II equation of size 2 2. The proofs are based on the determinantal × structure of the ensemble, asymptotic results for the related system of discrete Gaussian orthogonal polynomials, and a formulation of the correlation kernel in terms of a double contour integral. 1. Introduction. The probability models of nonintersecting Brownian motions have been studied extensively in last decade; see Tracy and Widom (2004, 2006), Adler and van Moerbeke (2005), Adler, Orantin and van Moer- beke (2010), Delvaux, Kuijlaars and Zhang (2011), Johansson (2013), Ferrari and Vet˝o(2012), Katori and Tanemura (2007) and Schehr et al.
    [Show full text]
  • Examples from Complex Geometry
    Examples from Complex Geometry Sam Auyeung November 22, 2019 1 Complex Analysis Example 1.1. Two Heuristic \Proofs" of the Fundamental Theorem of Algebra: Let p(z) be a polynomial of degree n > 0; we can even assume it is a monomial. We also know that the number of zeros is at most n. We show that there are exactly n. 1. Proof 1: Recall that polynomials are entire functions and that Liouville's Theorem says that a bounded entire function is in fact constant. Suppose that p has no roots. Then 1=p is an entire function and it is bounded. Thus, it is constant which means p is a constant polynomial and has degree 0. This contradicts the fact that p has positive degree. Thus, p must have a root α1. We can then factor out (z − α1) from p(z) = (z − α1)q(z) where q(z) is an (n − 1)-degree polynomial. We may repeat the above process until we have a full factorization of p. 2. Proof 2: On the real line, an algorithm for finding a root of a continuous function is to look for when the function changes signs. How do we generalize this to C? Instead of having two directions, we have a whole S1 worth of directions. If we use colors to depict direction and brightness to depict magnitude, we can plot a graph of a continuous function f : C ! C. Near a zero, we'll see all colors represented. If we travel in a loop around any point, we can keep track of whether it passes through all the colors; around a zero, we'll pass through all the colors, possibly many times.
    [Show full text]
  • A Review on Elliptic Curve Cryptography for Embedded Systems
    International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011 A REVIEW ON ELLIPTIC CURVE CRYPTOGRAPHY FOR EMBEDDED SYSTEMS Rahat Afreen 1 and S.C. Mehrotra 2 1Tom Patrick Institute of Computer & I.T, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad. (Maharashtra) INDIA [email protected] 2Department of C.S. & I.T., Dr. B.A.M. University, Aurangabad. (Maharashtra) INDIA [email protected] ABSTRACT Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. The mathematical problems of prime factorization and discrete logarithm are previously used in PKC systems. ECC has proved to provide same level of security with relatively small key sizes. The research in the field of ECC is mostly focused on its implementation on application specific systems. Such systems have restricted resources like storage, processing speed and domain specific CPU architecture. KEYWORDS Elliptic curve cryptography Public Key Cryptography, embedded systems, Elliptic Curve Digital Signature Algorithm ( ECDSA), Elliptic Curve Diffie Hellman Key Exchange (ECDH) 1. INTRODUCTION The changing global scenario shows an elegant merging of computing and communication in such a way that computers with wired communication are being rapidly replaced to smaller handheld embedded computers using wireless communication in almost every field. This has increased data privacy and security requirements.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Arithmetic on Curves
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 14, Number 2, April 1986 ARITHMETIC ON CURVES BY BARRY MAZUR CONTENTS I. What are Diophantine problems? 1. Miscellaneous Diophantine problems 2. Systematic formulations 3. Digression: Questions of integral solutions vs. Questions of Diophantine approxima­ tions II. Curves 1. Plane curves 2. Algebraic curves 3. Smooth curves 4. Riemann surfaces 5. Simplifying the singularities of a plane curve 6. Genus 7. The fundamental trichotomy 8. Interlude: A geometric finiteness result 9. On Mordell's conjecture and its analogue III. Jacobians and abelian varieties 1. An extension of the chord-and-tangent method to curves of genus > 2: The jacobian of a curve 2. The analytic parametrization of J by algebraic integrals modulo periods 3. The algebraic nature of the jacobian 4. The arithmetic nature of the jacobian IV. Classification of families with bounded bad reduction 1. Kodaira's problem 2. Shafarevich's problems 3. Parshin's construction: Shafarevich's conjecture implies Mordell's conjecture V. Heights 1. Height of points 2. Normed vector spaces 3. Heights of abelian varieties 4. A block diagram Received by the editors June 12, 1985. 1980Mathematics Subject Classification (1985 Revision). Primary 14Hxx, 14Kxx, llDxx, 00-01, 01-01, 01A65, 11-01, 11G05, 11G10, 11G15. ©1986 American Mathematical Society 0273-0979/86 $1.00 + $.25 per page 207 License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 208 BARRY MAZUR Bibliography 1. General references 2. References requiring some background 3. Accounts of the proof of Mordell's conjecture which require familiarity with the techniques of number theory or algebraic geometry 4.
    [Show full text]
  • Arxiv:2009.05223V1 [Math.NT] 11 Sep 2020 Fdegree of Eaeitrse Nfidn Function a finding in Interested Are We Hoe 1.1
    COUNTING ELLIPTIC CURVES WITH A RATIONAL N-ISOGENY FOR SMALL N BRANDON BOGGESS AND SOUMYA SANKAR Abstract. We count the number of rational elliptic curves of bounded naive height that have a rational N-isogeny, for N ∈ {2, 3, 4, 5, 6, 8, 9, 12, 16, 18}. For some N, this is done by generalizing a method of Harron and Snowden. For the remaining cases, we use the framework of Ellenberg, Satriano and Zureick-Brown, in which the naive height of an elliptic curve is the height of the corresponding point on a moduli stack. 1. Introduction ′ Let E be an elliptic curve over Q. An isogeny φ : E E between two elliptic curves is said to be cyclic ¯ → of degree N if Ker(φ)(Q) ∼= Z/NZ. Further, it is said to be rational if Ker(φ) is stable under the action of the absolute Galois group, GQ. A natural question one can ask is, how many elliptic curves over Q have a rational cyclic N-isogeny? Henceforth, we will omit the adjective ‘cyclic’, since these are the only types of isogenies we will consider. It is classically known that for N 10 and N = 12, 13, 16, 18, 25, there are infinitely many such elliptic curves. Thus we order them by naive≤ height. An elliptic curve E over Q has a unique minimal Weierstrass equation y2 = x3 + Ax + B where A, B Z and gcd(A3,B2) is not divisible by any 12th power. Define the naive height of E to be ht(E) = max A∈3, B 2 .
    [Show full text]
  • ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi)
    Math 213a (Fall 2021) Yum-Tong Siu 1 ELLIPTIC FUNCTIONS (Approach of Abel and Jacobi) Significance of Elliptic Functions. Elliptic functions and their associated theta functions are a new class of special functions which play an impor- tant role in explicit solutions of real world problems. Elliptic functions as meromorphic functions on compact Riemann surfaces of genus 1 and their associated theta functions as holomorphic sections of holomorphic line bun- dles on compact Riemann surfaces pave the way for the development of the theory of Riemann surfaces and higher-dimensional abelian varieties. Two Approaches to Elliptic Function Theory. One approach (which we call the approach of Abel and Jacobi) follows the historic development with motivation from real-world problems and techniques developed for solving the difficulties encountered. One starts with the inverse of an elliptic func- tion defined by an indefinite integral whose integrand is the reciprocal of the square root of a quartic polynomial. An obstacle is to show that the inverse function of the indefinite integral is a global meromorphic function on C with two R-linearly independent primitive periods. The resulting dou- bly periodic meromorphic functions are known as Jacobian elliptic functions, though Abel was actually the first mathematician who succeeded in inverting such an indefinite integral. Nowadays, with the use of the notion of a Rie- mann surface, the inversion can be handled by using the fundamental group of the Riemann surface constructed to make the square root of the quartic polynomial single-valued. The great advantage of this approach is that there is vast literature for the properties of the Jacobain elliptic functions and of their associated Jacobian theta functions.
    [Show full text]
  • Lecture 9 Riemann Surfaces, Elliptic Functions Laplace Equation
    Lecture 9 Riemann surfaces, elliptic functions Laplace equation Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible to choose coordinates (x,y) to diagonalize it as ds2 = Ω(x,y)(dx2 + dy2). We can then combine them into a complex combination z = x+iy to write this as ds2 =Ωdzdz¯. It is actually a K¨ahler metric since the condition ∂[i,gj]k¯ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian manifold in two dimensions is always K¨ahler. In the diagonalized form of the metric, the Laplace operator is of the form, −1 ∆=4Ω ∂z∂¯z¯. Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic and an anti-holomorphid function. ∆φ = 0 φ = f(z)+ f¯(¯z). → In the following, we assume Ω = 1 so that the metric is ds2 = dzdz¯. It is not difficult to generalize our results for non-constant Ω. Now, we would like to prove the following formula, 1 ∂¯ = πδ(z), z − where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand side on a disk of radius r gives, 1 i dz dxdy ∂¯ = = π. Zx2+y2≤r2 z 2 I|z|=r z − This proves the formula. Thus, the Green function G(z, w) obeying ∆zG(z, w) = 4πδ(z w), − should behave as G(z, w)= log z w 2 = log(z w) log(¯z w¯), − | − | − − − − near z = w.
    [Show full text]
  • Arxiv:1012.2020V1 [Math.CV]
    TRANSITIVITY ON WEIERSTRASS POINTS ZOË LAING AND DAVID SINGERMAN 1. Introduction An automorphism of a Riemann surface will preserve its set of Weier- strass points. In this paper, we search for Riemann surfaces whose automorphism groups act transitively on the Weierstrass points. One well-known example is Klein’s quartic, which is known to have 24 Weierstrass points permuted transitively by it’s automorphism group, PSL(2, 7) of order 168. An investigation of when Hurwitz groups act transitively has been made by Magaard and Völklein [19]. After a section on the preliminaries, we examine the transitivity property on several classes of surfaces. The easiest case is when the surface is hy- perelliptic, and we find all hyperelliptic surfaces with the transitivity property (there are infinitely many of them). We then consider surfaces with automorphism group PSL(2, q), Weierstrass points of weight 1, and other classes of Riemann surfaces, ending with Fermat curves. Basically, we find that the transitivity property property seems quite rare and that the surfaces we have found with this property are inter- esting for other reasons too. 2. Preliminaries Weierstrass Gap Theorem ([6]). Let X be a compact Riemann sur- face of genus g. Then for each point p ∈ X there are precisely g integers 1 = γ1 < γ2 <...<γg < 2g such that there is no meromor- arXiv:1012.2020v1 [math.CV] 9 Dec 2010 phic function on X whose only pole is one of order γj at p and which is analytic elsewhere. The integers γ1,...,γg are called the gaps at p. The complement of the gaps at p in the natural numbers are called the non-gaps at p.
    [Show full text]