1. Riemann Surfaces an N-Dimensional Topological Manifold

Total Page:16

File Type:pdf, Size:1020Kb

1. Riemann Surfaces an N-Dimensional Topological Manifold RIEMANN SURFACES JIA-MING (FRANK) LIOU 1. Riemann surfaces An n-dimensional topological manifold is a Hausdorff space M such that every point n p 2 M has an open neighborhood homeomorphic to an open set of R : If X is a 2n-dimensional topological manifold, a complex chart on X is a pair (U; ') n such that ' is a homeomorphism from U onto an open subset of C : A complex atlas on a 2n-dimensional complex manifold is a family of complex charts f(Uα;'α)g such that fUαg is an open cover of X and on each nonempty intersection Uα \ Uβ 6= ;; the map −1 'β ◦ 'α : 'α(Uα \ Uβ) ! 'β(Uα \ Uβ) n is biholomorphic on C : Two complex altas are called holomorphically equivalent if their union is also a complex atlas. A holomorphic equivalence class of complex atlas is called a complex structure. Definition 1.1. An n-dimensional complex manifold is a connected 2n-dimensional topo- logical manifold together with a complex structure. An one dimensional complex manifold is called a Riemann surface. Let X be a Riemann and f(Uα;'α)g be a complex atlas on X: Let U ⊂ X be an open set. A continuous function f : U ! C is called holomorphic if for each nonempty intersection U \ Uα; the map −1 f ◦ 'α : 'α(U \ Uα) ! C is a holomorphic function. The set of holomorphic functions on U is denoted by O(U): It is a complex subalgebra of C(U); the algebra of complex-valued continuous functions on U: The ring O(U) depends only on the complex structure on X and is independent of the choice of complex atlas. Lemma 1.1. Two holomorphically equivalent complex atlas on X determine the same ring O(U) of holomorphic functions on U for every open set U of X: Proof. The proof is left to the reader. Lemma 1.2. (Maximum modulus principle) Let f be a holomorphic function on an open set U of C: If there exists x0 2 U so that jf(x0)j = maxfjf(x)j : x 2 Ug; then f is a constant function. Proof. See Ahlfors, Stein, e.t.c. Lemma 1.3. Let X be a connected topological space. The only nonempty closed and open subset of X is X itself. Proof. The proof is left to the reader. ∼ Proposition 1.1. If X is a compact Riemann surface, then O(X) = C: 1 2 JIA-MING (FRANK) LIOU Proof. The ring O(X) obviously contains constant functions. Now, we only need to show that O(X) consists of constant functions only. Let f : X ! C be a holomorphic function. Since X is compact, there exists x0 2 X such that jf(x0)j = M; where M = maxfjf(x)j : x 2 Xg: −1 Let E be the set of all points x so that f(x) = f(x0): In other words, E = f (f(x0)): Then E is a closed subset of X: Since x0 2 E; E is nonempty. To show that f is a constant function, it suffices to prove E = X: If we can show that E is also open, by Lemma 1.3, E = X: −1 Let x be any point of E: Then x belongs to Uα for some α: By definition, f ◦ 'α : 'α(Uα) ! C is holomorphic. Since 'α(Uα) is open in C;'α(x) is its interior point. More- −1 over, jf ◦ 'α j has maximum at 'α(x) on 'α(Uα): By the maximum modulus principle −1 (Lemma 1.2), f ◦ 'α must be a constant function on 'α(Uα): Since 'α is a homeomor- phism from Uα to 'α(Uα); f is a constant function on Uα: This shows that Uα is an open neighborhood of x contained in E: Then x is an interior point of E: Since x is arbitrary in E; E is open. This completes the proof of our assertion. Definition 1.2. Let f : X ! Y be a continuous function between Riemann surfaces. Assume f(Uα;'α)g and f(Vβ; β)g are complex atlas on X and on Y respectively. We say −1 that f is a holomorphic mapping if for any Vβ and any Uα with Uα \ f (Vβ) 6= ;; the map −1 −1 β ◦ f ◦ 'α : 'α(Uα \ f (Vβ)) ! C is holomorphic. Observe that if f : X ! Y is a continuous function, for every open set V of Y; the map f ∗ : C(V ) ! C(f −1(V )); h 7! h ◦ f ∗ is a C-algebra homomorphism. Moreover, the set f OY (V ) is a well-defined C-subalgebra of C(f −1(V )): Theorem 1.1. A continuous function f : X ! Y between Riemann surfaces is a holomor- ∗ −1 phic mapping if and only if f OY (V ) is contained in OX (f (V )) for every open set V of Y: Proof. Exercise. Definition 1.3. A homeomorphism f : X ! Y between two Riemann surfaces will be called an isomorphism if both f and f −1 are holomorphic mapping. Two Riemann surfaces are called isomorphic if there exists an isomorphism between them. It follows from the definition that isomorphisms between Riemann surfaces define an equivalence relation. Our goal in this topic is to classify all compact Riemann surfaces up to isomorphisms. RIEMANN SURFACES 3 2. Some examples of Riemann surfaces Any open subset of C is a Riemann surface; in general, any open subset of a Riemann surface is again a Riemann surface. 2 2 2 2 2 Example 2.1. The two dimensional unit sphere S = f(x1; x2; x3) 2 R : x1 +x2 +x3 = 1g has a structure of a compact Riemann surface. Let N = (0; 0; 1) denote the north pole of S2 and U = S2 n fNg: Denote S = (0; 0; −1) the south pole of S2 and V = S2 n fSg: Then fU; V g forms an open cover of S2: Define ' : U ! C and : V ! C by x1 x2 x1 x2 '(x1; x2; x3) = + i ; (x1; x2; x3) = − i : 1 − x3 1 − x3 1 + x3 1 + x3 Then ' : U ! C and : V ! C are homeomorphisms. 1 ◦ '−1 : n f0g ! n f0g; z 7! : C C z We leave to the reader to verify that f('; U); ( ; V )g is a complex atlas on S2 and hence determines a complex complex structure on S2: Our next example will be the one-dimensional complex projective space. 2 Let C n f(0; 0)g be equipped with the subspace topology induced from the standard 2 2 Euclidean topology on C : On C n f(0; 0)g; we define a relation (z0; z1) ∼ (w0; w0) () (z0; z1) = t(w0; w1) × 2 for some t 2 C = Cnf0g: The quotient space (C nf(0; 0)g)= ∼ modulo this relation is called 1 the one dimensional complex projective space and denoted by P : Denote the quotient map 1 2 by π: We equip P with the quotient topology. The equivalent class of (z0; z1) 2 C nf(0; 0)g 1 is denoted by (z0 : z1) called the homogeneuous coordinates on P : 3 2 2 2 3 Denote S = f(z1; z2) 2 C : jz1j + jz2j = 1g: Then S is closed and bounded. By Heine-Borel theorem, S3 is compact. Consider the map 3 1 f : S ! P ; (z0; z1) 7! (z0 : z1): 1 Then f is continuous and surjective. This implies that P is compact by the compactness of S3 and continuity of f: The continuity and the surjectivity of f can be proved as follows. 3 2 1 −1 The inclusion map ι : S ! C n f0g is continuous. For every open set U of P ; f (U) = −1 −1 −1 2 −1 ι (π (U)): Since π (U) is open in C n f(0; 0)g and ι is continuous, f (U) is open in S3 and hence f is continuous. Surjectivity of f is obvious. 1 Lemma 2.1. P is a Hausdorff space. Let U0 = f(z0 : z1): z0 6= 0g and U1 = f(z0 : z1): z1 6= 0g: Then fU0;U1g forms an open 1 cover of P : Define '0 : U0 ! C and '1 : U1 ! C by z1 z0 '0(z0 : z1) = ;'1(z0 : z1) = : z0 z1 Then 'i : Ui ! C are homeomorphisms for i = 0; 1: 1 1 Proposition 2.1. The family f(Ui;'i): i = 0; 1g is a complex atlas on P so that P is a compact Riemann surface. 4 JIA-MING (FRANK) LIOU 1 Proof. We have seen that P is a compact Hausdorff space. We only need to show that 1 f(Ui;'i): i = 0; 1g is a complex atlas on P : Observe that U0 \ U1 = f(z0 : z1): z0; z1 6= 0g and '0(U0 \ U1) = '1(U0 \ U1) = C n f0g: The transition function on U0 \ U1 is given by 1 ' ◦ '−1 : n f0g ! n f0g; z 7! : 1 0 C C z −1 −1 Thus '1 ◦ '0 is biholomorphic on C n f0g whose inverse map is '0 ◦ '1 : 1 2 Proposition 2.2. The Riemann surface P is isomorphic to S as Riemann surfaces. Proof. Exercise. 1 Definition 2.1. A holomorphic mapping f : X ! P is called a meromorphic function on X: The set of all meromorphic functions on X is denoted by M(X): Suppose π : X ! Y is a surjective continuous function between topological spaces. We say that π : X ! Y is a covering space of Y if for each y 2 Y; there exists an open −1 ` neighborhood V of Y and a family of disjoint open sets fUig so that π (V ) = i Ui and for each i; π : Ui ! V is a homeomorphism.
Recommended publications
  • Riemann Surfaces
    RIEMANN SURFACES AARON LANDESMAN CONTENTS 1. Introduction 2 2. Maps of Riemann Surfaces 4 2.1. Defining the maps 4 2.2. The multiplicity of a map 4 2.3. Ramification Loci of maps 6 2.4. Applications 6 3. Properness 9 3.1. Definition of properness 9 3.2. Basic properties of proper morphisms 9 3.3. Constancy of degree of a map 10 4. Examples of Proper Maps of Riemann Surfaces 13 5. Riemann-Hurwitz 15 5.1. Statement of Riemann-Hurwitz 15 5.2. Applications 15 6. Automorphisms of Riemann Surfaces of genus ≥ 2 18 6.1. Statement of the bound 18 6.2. Proving the bound 18 6.3. We rule out g(Y) > 1 20 6.4. We rule out g(Y) = 1 20 6.5. We rule out g(Y) = 0, n ≥ 5 20 6.6. We rule out g(Y) = 0, n = 4 20 6.7. We rule out g(C0) = 0, n = 3 20 6.8. 21 7. Automorphisms in low genus 0 and 1 22 7.1. Genus 0 22 7.2. Genus 1 22 7.3. Example in Genus 3 23 Appendix A. Proof of Riemann Hurwitz 25 Appendix B. Quotients of Riemann surfaces by automorphisms 29 References 31 1 2 AARON LANDESMAN 1. INTRODUCTION In this course, we’ll discuss the theory of Riemann surfaces. Rie- mann surfaces are a beautiful breeding ground for ideas from many areas of math. In this way they connect seemingly disjoint fields, and also allow one to use tools from different areas of math to study them.
    [Show full text]
  • KLEIN's EVANSTON LECTURES. the Evanston Colloquium : Lectures on Mathematics, Deliv­ Ered from Aug
    1894] KLEIN'S EVANSTON LECTURES, 119 KLEIN'S EVANSTON LECTURES. The Evanston Colloquium : Lectures on mathematics, deliv­ ered from Aug. 28 to Sept. 9,1893, before members of the Congress of Mai hematics held in connection with the World's Fair in Chicago, at Northwestern University, Evanston, 111., by FELIX KLEIN. Reported by Alexander Ziwet. New York, Macniillan, 1894. 8vo. x and 109 pp. THIS little volume occupies a somewhat unicrue position in mathematical literature. Even the Commission permanente would find it difficult to classify it and would have to attach a bewildering series of symbols to characterize its contents. It is stated as the object of these lectures " to pass in review some of the principal phases of the most recent development of mathematical thought in Germany" ; and surely, no one could be more competent to do this than Professor Felix Klein. His intimate personal connection with this develop­ ment is evidenced alike by the long array of his own works and papers, and by those of the numerous pupils and followers he has inspired. Eut perhaps even more than on this account is he fitted for this task by the well-known comprehensiveness of his knowledge and the breadth of view so -characteristic of all his work. In these lectures there is little strictly mathematical reason­ ing, but a great deal of information and expert comment on the most advanced work done in pure mathematics during the last twenty-five years. Happily this is given with such freshness and vigor of style as makes the reading a recreation.
    [Show full text]
  • VECTOR BUNDLES OVER a REAL ELLIPTIC CURVE 3 Admit a Canonical Real Structure If K Is Even and a Canonical Quaternionic Structure If K Is Odd
    VECTOR BUNDLES OVER A REAL ELLIPTIC CURVE INDRANIL BISWAS AND FLORENT SCHAFFHAUSER Abstract. Given a geometrically irreducible smooth projective curve of genus 1 defined over the field of real numbers, and a pair of integers r and d, we deter- mine the isomorphism class of the moduli space of semi-stable vector bundles of rank r and degree d on the curve. When r and d are coprime, we describe the topology of the real locus and give a modular interpretation of its points. We also study, for arbitrary rank and degree, the moduli space of indecom- posable vector bundles of rank r and degree d, and determine its isomorphism class as a real algebraic variety. Contents 1. Introduction 1 1.1. Notation 1 1.2. The case of genus zero 2 1.3. Description of the results 3 2. Moduli spaces of semi-stable vector bundles over an elliptic curve 5 2.1. Real elliptic curves and their Picard varieties 5 2.2. Semi-stable vector bundles 6 2.3. The real structure of the moduli space 8 2.4. Topologyofthesetofrealpointsinthecoprimecase 10 2.5. Real vector bundles of fixed determinant 12 3. Indecomposable vector bundles 13 3.1. Indecomposable vector bundles over a complex elliptic curve 13 3.2. Relation to semi-stable and stable bundles 14 3.3. Indecomposable vector bundles over a real elliptic curve 15 References 17 arXiv:1410.6845v2 [math.AG] 8 Jan 2016 1. Introduction 1.1. Notation. In this paper, a real elliptic curve will be a triple (X, x0, σ) where (X, x0) is a complex elliptic curve (i.e., a compact connected Riemann surface of genus 1 with a marked point x0) and σ : X −→ X is an anti-holomorphic involution (also called a real structure).
    [Show full text]
  • Lectures on the Combinatorial Structure of the Moduli Spaces of Riemann Surfaces
    LECTURES ON THE COMBINATORIAL STRUCTURE OF THE MODULI SPACES OF RIEMANN SURFACES MOTOHICO MULASE Contents 1. Riemann Surfaces and Elliptic Functions 1 1.1. Basic Definitions 1 1.2. Elementary Examples 3 1.3. Weierstrass Elliptic Functions 10 1.4. Elliptic Functions and Elliptic Curves 13 1.5. Degeneration of the Weierstrass Elliptic Function 16 1.6. The Elliptic Modular Function 19 1.7. Compactification of the Moduli of Elliptic Curves 26 References 31 1. Riemann Surfaces and Elliptic Functions 1.1. Basic Definitions. Let us begin with defining Riemann surfaces and their moduli spaces. Definition 1.1 (Riemann surfaces). A Riemann surface is a paracompact Haus- S dorff topological space C with an open covering C = λ Uλ such that for each open set Uλ there is an open domain Vλ of the complex plane C and a homeomorphism (1.1) φλ : Vλ −→ Uλ −1 that satisfies that if Uλ ∩ Uµ 6= ∅, then the gluing map φµ ◦ φλ φ−1 (1.2) −1 φλ µ −1 Vλ ⊃ φλ (Uλ ∩ Uµ) −−−−→ Uλ ∩ Uµ −−−−→ φµ (Uλ ∩ Uµ) ⊂ Vµ is a biholomorphic function. Remark. (1) A topological space X is paracompact if for every open covering S S X = λ Uλ, there is a locally finite open cover X = i Vi such that Vi ⊂ Uλ for some λ. Locally finite means that for every x ∈ X, there are only finitely many Vi’s that contain x. X is said to be Hausdorff if for every pair of distinct points x, y of X, there are open neighborhoods Wx 3 x and Wy 3 y such that Wx ∩ Wy = ∅.
    [Show full text]
  • The Riemann-Roch Theorem Is a Special Case of the Atiyah-Singer Index Formula
    S.C. Raynor The Riemann-Roch theorem is a special case of the Atiyah-Singer index formula Master thesis defended on 5 March, 2010 Thesis supervisor: dr. M. L¨ubke Mathematisch Instituut, Universiteit Leiden Contents Introduction 5 Chapter 1. Review of Basic Material 9 1. Vector bundles 9 2. Sheaves 18 Chapter 2. The Analytic Index of an Elliptic Complex 27 1. Elliptic differential operators 27 2. Elliptic complexes 30 Chapter 3. The Riemann-Roch Theorem 35 1. Divisors 35 2. The Riemann-Roch Theorem and the analytic index of a divisor 40 3. The Euler characteristic and Hirzebruch-Riemann-Roch 42 Chapter 4. The Topological Index of a Divisor 45 1. De Rham Cohomology 45 2. The genus of a Riemann surface 46 3. The degree of a divisor 48 Chapter 5. Some aspects of algebraic topology and the T-characteristic 57 1. Chern classes 57 2. Multiplicative sequences and the Todd polynomials 62 3. The Todd class and the Chern Character 63 4. The T-characteristic 65 Chapter 6. The Topological Index of the Dolbeault operator 67 1. Elements of topological K-theory 67 2. The difference bundle associated to an elliptic operator 68 3. The Thom Isomorphism 71 4. The Todd genus is a special case of the topological index 76 Appendix: Elliptic complexes and the topological index 81 Bibliography 85 3 Introduction The Atiyah-Singer index formula equates a purely analytical property of an elliptic differential operator P (resp. elliptic complex E) on a compact manifold called the analytic index inda(P ) (resp. inda(E)) with a purely topological prop- erty, the topological index indt(P )(resp.
    [Show full text]
  • Algebraic Surfaces Sep
    Algebraic surfaces Sep. 17, 2003 (Wed.) 1. Comapct Riemann surface and complex algebraic curves This section is devoted to illustrate the connection between compact Riemann surface and complex algebraic curve. We will basically work out the example of elliptic curves and leave the general discussion for interested reader. Let Λ C be a lattice, that is, Λ = Zλ1 + Zλ2 with C = Rλ1 + Rλ2. Then an ⊂ elliptic curve E := C=Λ is an abelian group. On the other hand, it’s a compact Riemann surface. One would like to ask whether there are holomorphic function or meromorphic functions on E or not. To this end, let π : C E be the natural map, which is a group homomorphism (algebra), holomorphic function! (complex analysis), and covering (topology). A function f¯ on E gives a function f on C which is double periodic, i.e., f(z + λ1) = f(z); f(z + λ2) = f(z); z C: 8 2 Recall that we have the following Theorem 1.1 (Liouville). There is no non-constant bounded entire function. Corollary 1.2. There is no non-constant holomorphic function on E. Proof. First note that if f¯ is a holomorphic function on E, then it induces a double periodic holomorphic function on C. It then suffices to claim that a a double periodic holomorphic function on C is bounded. To do this, consider := z = α1λ1 + α2λ2 0 αi 1 . The image of f is f(D). However, D is compact,D f so is f(D) and hencej ≤f(D)≤ is bounded.g By Liouville theorem, f is constant and hence so is f¯.
    [Show full text]
  • Geometry of Algebraic Curves
    Geometry of Algebraic Curves Fall 2011 Course taught by Joe Harris Notes by Atanas Atanasov One Oxford Street, Cambridge, MA 02138 E-mail address: [email protected] Contents Lecture 1. September 2, 2011 6 Lecture 2. September 7, 2011 10 2.1. Riemann surfaces associated to a polynomial 10 2.2. The degree of KX and Riemann-Hurwitz 13 2.3. Maps into projective space 15 2.4. An amusing fact 16 Lecture 3. September 9, 2011 17 3.1. Embedding Riemann surfaces in projective space 17 3.2. Geometric Riemann-Roch 17 3.3. Adjunction 18 Lecture 4. September 12, 2011 21 4.1. A change of viewpoint 21 4.2. The Brill-Noether problem 21 Lecture 5. September 16, 2011 25 5.1. Remark on a homework problem 25 5.2. Abel's Theorem 25 5.3. Examples and applications 27 Lecture 6. September 21, 2011 30 6.1. The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33 Lecture 7. September 23, 2011 35 7.1. More on divisors 35 7.2. Riemann-Roch, finally 36 7.3. Fun applications 37 7.4. Sheaf cohomology 37 Lecture 8. September 28, 2011 40 8.1. Examples of low genus 40 8.2. Hyperelliptic curves 40 8.3. Low genus examples 42 Lecture 9. September 30, 2011 44 9.1. Automorphisms of genus 0 an 1 curves 44 9.2.
    [Show full text]
  • (Elliptic Modular Curves) JS Milne
    Modular Functions and Modular Forms (Elliptic Modular Curves) J.S. Milne Version 1.30 April 26, 2012 This is an introduction to the arithmetic theory of modular functions and modular forms, with a greater emphasis on the geometry than most accounts. BibTeX information: @misc{milneMF, author={Milne, James S.}, title={Modular Functions and Modular Forms (v1.30)}, year={2012}, note={Available at www.jmilne.org/math/}, pages={138} } v1.10 May 22, 1997; first version on the web; 128 pages. v1.20 November 23, 2009; new style; minor fixes and improvements; added list of symbols; 129 pages. v1.30 April 26, 2010. Corrected; many minor revisions. 138 pages. Please send comments and corrections to me at the address on my website http://www.jmilne.org/math/. The photograph is of Lake Manapouri, Fiordland, New Zealand. Copyright c 1997, 2009, 2012 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder. Contents Contents 3 Introduction ..................................... 5 I The Analytic Theory 13 1 Preliminaries ................................. 13 2 Elliptic Modular Curves as Riemann Surfaces . 25 3 Elliptic Functions ............................... 41 4 Modular Functions and Modular Forms ................... 48 5 Hecke Operators ............................... 68 II The Algebro-Geometric Theory 89 6 The Modular Equation for 0.N / ...................... 89 7 The Canonical Model of X0.N / over Q ................... 93 8 Modular Curves as Moduli Varieties ..................... 99 9 Modular Forms, Dirichlet Series, and Functional Equations . 104 10 Correspondences on Curves; the Theorem of Eichler-Shimura . 108 11 Curves and their Zeta Functions . 112 12 Complex Multiplication for Elliptic Curves Q .
    [Show full text]
  • Notes on Riemann Surfaces
    NOTES ON RIEMANN SURFACES DRAGAN MILICIˇ C´ 1. Riemann surfaces 1.1. Riemann surfaces as complex manifolds. Let M be a topological space. A chart on M is a triple c = (U, ϕ) consisting of an open subset U M and a homeomorphism ϕ of U onto an open set in the complex plane C. The⊂ open set U is called the domain of the chart c. The charts c = (U, ϕ) and c′ = (U ′, ϕ′) on M are compatible if either U U ′ = or U U ′ = and ϕ′ ϕ−1 : ϕ(U U ′) ϕ′(U U ′) is a bijective holomorphic∩ ∅ function∩ (hence ∅ the inverse◦ map is∩ also holomorphic).−→ ∩ A family of charts on M is an atlas of M if the domains of charts form a covering of MA and any two charts in are compatible. Atlases and of M are compatibleA if their union is an atlas on M. This is obviously anA equivalenceB relation on the set of all atlases on M. Each equivalence class of atlases contains the largest element which is equal to the union of all atlases in this class. Such atlas is called saturated. An one-dimensional complex manifold M is a hausdorff topological space with a saturated atlas. If M is connected we also call it a Riemann surface. Let M be an Riemann surface. A chart c = (U, ϕ) is a chart around z M if z U. We say that it is centered at z if ϕ(z) = 0. ∈ ∈Let M and N be two Riemann surfaces. A continuous map F : M N is a holomorphic map if for any two pairs of charts c = (U, ϕ) on M and d =−→ (V, ψ) on N such that F (U) V , the mapping ⊂ ψ F ϕ−1 : ϕ(U) ϕ(V ) ◦ ◦ −→ is a holomorphic function.
    [Show full text]
  • Arxiv:1703.01869V2
    ABOUT THE FRICKE-MACBEATH CURVE RUBEN A. HIDALGO Abstract. A closed Riemann surface of genus g ≥ 2 is called a Hurwitz curve if its group of conformal automorphisms has order 84(g − 1). In 1895, A. Wiman noticed that there is no Hurwitz curve of genus g = 2, 4, 5, 6 and, up to isomorphisms, there is a unique Hurwitz curve of genus g = 3; this being Klein’s plane quartic curve. Later, in 1965, A. Macbeath proved the existence, up to isomorphisms, of a unique Hurwitz curve of genus g = 7; this known as the Fricke-Macbeath curve. Equations were also provided; that being the fiber product of suitable three elliptic curves. In the same year, W. Edge constructed such a genus seven Hurwitz curve by elementary projective geometry. Such a construction was provided by first constructing a 4-dimensional family of genus seven closed Riemann 3 surfaces S µ admitting a group Gµ ≅ Z2 of conformal automorphisms so that S µ~Gµ has genus zero. In this paper we discuss the above curves in terms of fiber products of classical Fermat curves and we provide a geometrical explanation of the three elliptic curves in Macbeath’s description. We also observe that the jacobian variety of each S µ is isogenous to the product of seven elliptic curves (explicitly given) and, for the particular Fricke- Macbeath curve, we obtain the well known fact that its jacobian variety is isogenous to E7 for a suitable elliptic curve E. 1. Introduction If S is a closed Riemann surface of genus g ≥ 2, then its group Aut(S ), of conformal automorphisms, has order at most 84(g − 1) (Hurwitz upper bound).
    [Show full text]
  • 1 Riemann Surfaces - Sachi Hashimoto
    1 Riemann Surfaces - Sachi Hashimoto 1.1 Riemann Hurwitz Formula We need the following fact about the genus: Exercise 1 (Unimportant). The genus is an invariant which is independent of the triangu- lation. Thus we can speak of it as an invariant of the surface, or of the Euler characteristic χ(X) = 2 − 2g. This can be proven by showing that the genus is the dimension of holomorphic one forms on a Riemann surface. Motivation: Suppose we have some hyperelliptic curve C : y2 = (x+1)(x−1)(x+2)(x−2) and we want to determine the topology of the solution set. For almost every x0 2 C we can find two values of y 2 C such that (x0; y) is a solution. However, when x = ±1; ±2 there is only one y-value, y = 0, which satisfies this equation. There is a nice way to do this with branch cuts{the square root function is well defined everywhere as a two valued functioned except at these points where we have a portal between the \positive" and the \negative" world. Here it is best to draw some pictures, so I will omit this part from the typed notes. But this is not very systematic, so let me say a few words about our eventual goal. What we seem to be doing is projecting our curve to the x-coordinate and then considering what this generically degree 2 map does on special values. The hope is that we can extract from this some topological data: because the sphere is a known quantity, with genus 0, and the hyperelliptic curve is our unknown, quantity, our goal is to leverage the knowns and unknowns.
    [Show full text]
  • Geometry of Algebraic Curves
    Geometry of Algebraic Curves Lectures delivered by Joe Harris Notes by Akhil Mathew Fall 2011, Harvard Contents Lecture 1 9/2 x1 Introduction 5 x2 Topics 5 x3 Basics 6 x4 Homework 11 Lecture 2 9/7 x1 Riemann surfaces associated to a polynomial 11 x2 IOUs from last time: the degree of KX , the Riemann-Hurwitz relation 13 x3 Maps to projective space 15 x4 Trefoils 16 Lecture 3 9/9 x1 The criterion for very ampleness 17 x2 Hyperelliptic curves 18 x3 Properties of projective varieties 19 x4 The adjunction formula 20 x5 Starting the course proper 21 Lecture 4 9/12 x1 Motivation 23 x2 A really horrible answer 24 x3 Plane curves birational to a given curve 25 x4 Statement of the result 26 Lecture 5 9/16 x1 Homework 27 x2 Abel's theorem 27 x3 Consequences of Abel's theorem 29 x4 Curves of genus one 31 x5 Genus two, beginnings 32 Lecture 6 9/21 x1 Differentials on smooth plane curves 34 x2 The more general problem 36 x3 Differentials on general curves 37 x4 Finding L(D) on a general curve 39 Lecture 7 9/23 x1 More on L(D) 40 x2 Riemann-Roch 41 x3 Sheaf cohomology 43 Lecture 8 9/28 x1 Divisors for g = 3; hyperelliptic curves 46 x2 g = 4 48 x3 g = 5 50 1 Lecture 9 9/30 x1 Low genus examples 51 x2 The Hurwitz bound 52 2.1 Step 1 . 53 2.2 Step 10 ................................. 54 2.3 Step 100 ................................ 54 2.4 Step 2 .
    [Show full text]