Mec15237 Am.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
A Taxonomic and Phylogenetic Investigation of Conifer Endophytes
A Taxonomic and Phylogenetic Investigation of Conifer Endophytes of Eastern Canada by Joey B. Tanney A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2016 Abstract Research interest in endophytic fungi has increased substantially, yet is the current research paradigm capable of addressing fundamental taxonomic questions? More than half of the ca. 30,000 endophyte sequences accessioned into GenBank are unidentified to the family rank and this disparity grows every year. The problems with identifying endophytes are a lack of taxonomically informative morphological characters in vitro and a paucity of relevant DNA reference sequences. A study involving ca. 2,600 Picea endophyte cultures from the Acadian Forest Region in Eastern Canada sought to address these taxonomic issues with a combined approach involving molecular methods, classical taxonomy, and field work. It was hypothesized that foliar endophytes have complex life histories involving saprotrophic reproductive stages associated with the host foliage, alternative host substrates, or alternate hosts. Based on inferences from phylogenetic data, new field collections or herbarium specimens were sought to connect unidentifiable endophytes with identifiable material. Approximately 40 endophytes were connected with identifiable material, which resulted in the description of four novel genera and 21 novel species and substantial progress in endophyte taxonomy. Endophytes were connected with saprotrophs and exhibited reproductive stages on non-foliar tissues or different hosts. These results provide support for the foraging ascomycete hypothesis, postulating that for some fungi endophytism is a secondary life history strategy that facilitates persistence and dispersal in the absence of a primary host. -
<I>Coccomyces</I> (<I>Rhytismatales</I>, <I>Ascomycota</I>)
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/118.231 Volume 118, pp. 231–235 October–December 2011 A new species of Coccomyces (Rhytismatales, Ascomycota) from Mt Huangshan, China Guo-Jun Jia1, Ying-Ren Lin2* & Cheng-Lin Hou3 1 School of Life Science & 2 School of Forestry & Landscape Architecture, Anhui Agricultural University, West Changjiang Road 130, Hefei, Anhui 230036, China 3 College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China *Correspondence to: [email protected] Abstract—A fungus found on leaves of Osmanthus fragrans from Mt Huangshan in Anhui Province, China, is described as Coccomyces minimus. The new species is similar to C. cyclobalanopsis but differs in the extremely small, subepidermal ascomata and in the presence of conidiomata. The type specimen is deposited in the Forest Fungi Dried Reference Collection of Anhui Agricultural University, China (AAUF). Both illustration and comments accompany the description. Key words—taxonomy, Rhytismataceae, Oleaceae Introduction Coccomyces De Not. is the second-largest genus in the Rhytismataceae (Rhytismatales, Leotiomycetes, Ascomycota) (Kirk et al. 2008). Members of this genus are characterized by polygonal to more or less circular ascomata opening by several radiate or irregular splits, cylindrical to clavate asci, and filiform to fusiform ascospores, oftenwith gelatinous sheaths (Sherwood 1980; Cannon & Minter 1986; Johnston 1986, 2000; Spooner 1990; Lin et al. 1994). Of the 116 Coccomyces species known worldwide (Kirk et al. 2008), 23 have been reported from China (Korf & Zhuang 1985; Lin 1998; Hou et al. 2006, 2007). They are widely distributed and inhabit leaves, twigs, bark, or wood of vascular plants, especially Ericaceae, Fagaceae, and Lauraceae (Sherwood 1980). -
Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
(topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota. -
A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA. -
Notizbuchartige Auswahlliste Zur Bestimmungsliteratur Für Europäische Pilzgattungen Der Discomyceten Und Hypogäischen Ascomyc
Pilzgattungen Europas - Liste 8: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für Discomyceten und hypogäische Ascomyceten Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Beachte: Ascomycota mit Discomyceten-Phylogenie, aber ohne Fruchtkörperbildung, wurden von mir in die Pyrenomyceten-Datei gestellt. Erstaunlich ist die Vielzahl der Ordnungen, auf die die nicht- lichenisierten Discomyceten verteilt sind. Als Überblick soll die folgende Auflistung dieser Ordnungen dienen, wobei die Zuordnung der Arten u. Gattungen dabei noch sehr im Fluss ist, so dass mit ständigen Änderungen bei der Systematik zu rechnen ist. Es darf davon ausgegangen werden, dass die Lichenisierung bestimmter Arten in vielen Fällen unabhängig voneinander verlorengegangen ist, so dass viele Ordnungen mit üblicherweise lichenisierten Vertretern auch einige wenige sekundär entstandene, nicht-licheniserte Arten enthalten. Eine Aufzählung der zahlreichen Familien innerhalb dieser Ordnungen würde sogar den Rahmen dieser Arbeit sprengen, dafür muss auf Kirk et al. (2008) u. auf die neuste Version des Outline of Ascomycota verwiesen werden (www.fieldmuseum.org/myconet/outline.asp). Die Ordnungen der europäischen nicht-lichenisierten Discomyceten und hypogäischen Ascomyceten Wegen eines fehlenden modernen Buches zur deutschen Discomycetenflora soll hier eine Übersicht über die Ordnungen der Discomyceten mit nicht-lichenisierten Vertretern vorangestellt werden (ca. 18 europäische Ordnungen mit nicht- lichenisierten Discomyceten): Agyriales (zu Lecanorales?) Lebensweise: Zum Teil lichenisiert Arthoniales (= Opegraphales) Lebensweise: Zum Teil lichenisiert Caliciales (zu Lecanorales?) Lebensweise: Zum Teil lichenisiert Erysiphales (diese aus praktischen Gründen in der Pyrenomyceten- Datei abgehandelt) Graphidales [seit allerneuster Zeit wieder von den Ostropales getrennt gehalten; s. Wedin et al. (2005), MR 109, 159-172; Lumbsch et al. -
Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system. -
Biodiversity Assessment of Ascomycetes Inhabiting Lobariella
© 2019 W. Szafer Institute of Botany Polish Academy of Sciences Plant and Fungal Systematics 64(2): 283–344, 2019 ISSN 2544-7459 (print) DOI: 10.2478/pfs-2019-0022 ISSN 2657-5000 (online) Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests led to one new family, three new genera and 13 new species of lichenicolous fungi Adam Flakus1*, Javier Etayo2, Jolanta Miadlikowska3, François Lutzoni3, Martin Kukwa4, Natalia Matura1 & Pamela Rodriguez-Flakus5* Abstract. Neotropical mountain forests are characterized by having hyperdiverse and Article info unusual fungi inhabiting lichens. The great majority of these lichenicolous fungi (i.e., detect- Received: 4 Nov. 2019 able by light microscopy) remain undescribed and their phylogenetic relationships are Revision received: 14 Nov. 2019 mostly unknown. This study focuses on lichenicolous fungi inhabiting the genus Lobariella Accepted: 16 Nov. 2019 (Peltigerales), one of the most important lichen hosts in the Andean cloud forests. Based Published: 2 Dec. 2019 on molecular and morphological data, three new genera are introduced: Lawreyella gen. Associate Editor nov. (Cordieritidaceae, for Unguiculariopsis lobariella), Neobaryopsis gen. nov. (Cordy- Paul Diederich cipitaceae), and Pseudodidymocyrtis gen. nov. (Didymosphaeriaceae). Nine additional new species are described (Abrothallus subhalei sp. nov., Atronectria lobariellae sp. nov., Corticifraga microspora sp. nov., Epithamnolia rugosopycnidiata sp. nov., Lichenotubeufia cryptica sp. nov., Neobaryopsis andensis sp. nov., Pseudodidymocyrtis lobariellae sp. nov., Rhagadostomella hypolobariella sp. nov., and Xylaria lichenicola sp. nov.). Phylogenetic placements of 13 lichenicolous species are reported here for Abrothallus, Arthonia, Glo- bonectria, Lawreyella, Monodictys, Neobaryopsis, Pseudodidymocyrtis, Sclerococcum, Trichonectria and Xylaria. The name Sclerococcum ricasoliae comb. nov. is reestablished for the neotropical populations formerly named S. -
Fungal Systematics and Evolution: FUSE 6
DOI 10.12905/0380.sydowia72-2020-0271 Published online ?? October 2020 Fungal Systematics and Evolution: FUSE 6 Danny Haelewaters1,2,3,4,*, Bálint Dima5, Abbas I.I. Abdel-Hafiz6, Mohamed A. Abdel-Wahab 6, Samar R. Abul-Ezz6, Ismail Acar7, Elvira Aguirre-Acosta8, M. Catherine Aime1, Suheda Aldemir9, Muhammad Ali10, Olivia Ayala-Vásquez11, Mahmoud S. Bakhit6, Hira Bashir10, Eliseo Battistin12, Egil Bendiksen13, Rigoberto Castro-Rivera14, Ömer Faruk Çolak15, André De Kesel16, Javier Isaac de la Fuente17,18, Ayten Dizkırıcı9, Shah Hussain19, Gerrit Maarten Jansen20, Og˘uzhan Kaygusuz21, Abdul Nasir Khalid10, Junaid Khan19, Anna A. Kiyashko22, Ellen Larsson23, César Ramiro Martínez-González24, Olga V. Morozova22, Abdul Rehman Niazi10, Machiel Evert Noordeloos25, Thi Ha Giang Pham26,27, Eugene S. Popov22, Nadezhda V. Psurtseva22, Nathan Schoutteten3, Hassan Sher19, I˙brahim Türkekul28, Annemieke Verbeken3, Habib Ahmad29, Najam ul Sehar Afshan10, Philippe Christe30, Muhammad Fiaz31, Olivier Glaizot30,32, Jingyu Liu1, Javeria Majeed10, Wanda Markotter33, Angelina Nagy34, Haq Nawaz10, Viktor Papp35, Áron Péter36, Walter P. Pfliegler37, Tayyaba Qasim10, Maria Riaz10, Attila D. Sándor36,38, Tamara Szentiványi30,32, Hermann Voglmayr39,40, Nousheen Yousaf41 & Irmgard Krisai-Greilhuber42 1 Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA 2 Department of Zoology, University of South Bohemia, 370 05 Cˇeské Budejovice, Czech Republic 3 Research Group Mycology, Department of Biology, Faculty of Sciences, Ghent -
Fungi, Ascomycota)
A peer-reviewed open-access journal MycoKeys 54: 99–133 (2019) Placement of Triblidiaceae in Rhytismatales… 99 doi: 10.3897/mycokeys.54.35697 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Placement of Triblidiaceae in Rhytismatales and comments on unique ascospore morphologies in Leotiomycetes (Fungi, Ascomycota) Jason M. Karakehian1, Luis Quijada1, Gernot Friebes2, Joey B. Tanney3, Donald H. Pfister1 1 Farlow Herbarium of Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA 2 Universalmuseum Joanneum, Centre of Natural History, Botany & Mycology, Weinzöttlstraße 16, 8045 Graz, Austria 3 Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada Corresponding author: Jason M. Karakehian ([email protected]) Academic editor: Thorsten Lumbsch | Received 23 April 2019 | Accepted 17 May 2019 | Published 18 June 2019 Citation: Karakehian JM, Quijada L, Friebes G, Tanney JB, Pfister DH (2019) Placement of Triblidiaceae in Rhytismatales and comments on unique ascospore morphologies in Leotiomycetes (Fungi, Ascomycota). MycoKeys 54: 99–133. https://doi.org/10.3897/mycokeys.54.35697 Abstract Triblidiaceae is a family of uncommonly encountered, non-lichenized discomycetes. A recent classification circumscribed the family to include Triblidium (4 spp. and 1 subsp.), Huangshania (2 spp.) and Pseudographis (2 spp. and 1 var.). The apothecia of these fungi are persistent and drought-tolerant; they possess stromatic, highly melanized covering layers that open and close with fluctuations of humidity. Triblidialean fungi occur primarily on the bark of Quercus, Pinaceae and Ericaceae, presumably as saprobes. Though the type species of Huangshania is from China, these fungi are mostly known from collections originating from Western Hemi- sphere temperate and boreal forests. -
Environmental Filtering Structures Fungal Endophyte Communities in Tree Bark
Received: 14 March 2019 | Revised: 23 August 2019 | Accepted: 27 August 2019 DOI: 10.1111/mec.15237 FROM THE COVER Environmental filtering structures fungal endophyte communities in tree bark Peter T. Pellitier1 | Donald R. Zak1,2 | Sydney O. Salley1 1School for Environment and Sustainability, University of Michigan, Ann Abstract Arbor, MI, USA The factors that control the assembly and composition of endophyte communities 2 Department of Ecology & Evolutionary across plant hosts remains poorly understood. This is especially true for endophyte Biology, University of Michigan, Ann Arbor, MI, USA communities inhabiting inner tree bark, one of the least studied components of the plant microbiome. Here, we test the hypothesis that bark of different tree species Correspondence Peter T. Pellitier, School for Environment and acts as an environmental filter structuring endophyte communities, as well as the Sustainability, University of Michigan, Ann alternative hypothesis, that bark acts as a passive reservoir that accumulates a di‐ Arbor, MI, USA. Email: [email protected] verse assemblage of spores and latent fungal life stages. We develop a means of extracting high‐quality DNA from surface sterilized tree bark to compile the first culture‐independent study of inner bark fungal communities. We sampled a total of 120 trees, spanning five dominant overstorey species across multiple sites in a mixed temperate hardwood forest. We find that each of the five tree species har‐ bour unique assemblages of inner bark fungi and that angiosperm and gymnosperm hosts harbour significantly different fungal communities. Chemical components of tree bark (pH, total phenolic content) structure some of the differences detected among fungal communities residing in particular tree species. -
Zeus Olympius Gen. Et Sp.Nov. and Nectria Ganymede Sp.Nov. from Mount Olympus, Greece
[ 55 ] Trans. Br. mycol. Soc. 88 (1), 55-61 (1987) Printed in Great Britain ZEUS OLYMPIUS GEN. ET SP.NOV. AND NECTRIA GANYMEDE SP.NOV. FROM MOUNT OLYMPUS, GREECE By D. W. MINTER, ROSALIND LOWEN CAB International Mycological Institute, Ferry Lane, Kew, Surrey, TW9 3AF, U.K. AND S. DIAMANDIS Northern Forest Research Station, Loutra Thermi, Thessaloniki, Greece Zeus olympius gen. et sp. nov. (Ascomycotina, Rhytismatales, Rhytismataceae) and Nectria ganymede sp. nov. (Ascomycotina, Hypocreales, Hypocreaceae) are described, illustrated and discussed, based on collections on dead branches of Pinus leucodermis on Mount Olympus in northern Greece. Zeus olympius appears to occur exclusively on Pinus leucodermis and Neetria ganymede exclusively on old ascomata of Zeus olympius. During a recent visit by the senior author to Mount Ascomata apothecial, scattered or in small groups Olympus in northern Greece, two interesting fungi in rather pale dead twigs and small branches of were collected. They are described, illustrated and Pinus leucodermis, not closely associated with scars discussed in the following paragraphs. of short shoot needle bundles; when immature immersed below the bark and a black fungal Zeus Minter & Diamandis gen.nov. covering layer; when mature circular or rather Etym.: named after the king of gods in ancient angular, 0'5-2 mm diam; becoming erumpent, Greek mythology, who was believed to inhabit throwing back the bark and breaking the black Mount Olympus covering layer by several irregular radial splits to Hie fungus ascophorus, ad ordinem Rhytismatalium et reveal the dark fawn-coloured hymenium (frag- familiam Rhytismatacearum pertinens, corticola, erum- ments of the bark often remaining attached to the pens, c1ypeo nigro ascomatum sane statu tectus, asco- black covering layer hiding its dark appearance), sporas habet elJipsoideas vaginis indutas mirabilibus et raising the substratum surface, but lacking a stalk, ascosnil in iodocoerulescentes.