water Article Speeding up the Computation of the Transient Richards’ Equation with AMGCL Robert Pinzinger 1,* and René Blankenburg 2 1 Institut für Grundwasserwirtschaft, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany 2 Ingenieurbüro für Grundwasser GmbH, Nonnenstraße 9, 04229 Leipzig, Germany;
[email protected] * Correspondence:
[email protected] Received: 4 December 2019; Accepted: 15 January 2020; Published: 18 January 2020 Abstract: The Richards’-equation is widely used for modeling complex soil water dynamics in the vadose zone. Usually, the Richards’-equation is simulated with the Finite Element Method, the Finite Difference Method, or the Finite Volume Method. In all three cases, huge systems of equations are to be solved, which is computationally expensive. By employing the free software library AMGCL, a reduction of the computational running time of up to 79% was achieved without losing accuracy. Seven models with different soils and geometries were tested, and the analysis of these tests showed, that AMGCL causes a speedup in all models with 20,000 or more nodes. However, the numerical overhead of AMGCL causes a slowdown in all models with 20,000 or fewer nodes. Keywords: Richards’-equation; simulation; algebraic multigrid; preconditioner 1. Introduction The vadose zone extends from the surface of the Earth down to the groundwater-table. This region is a habitat for bacteria and other microorganisms, some of which clean water while it travels through this zone. However, human activities in agriculture pollute the vadose zone and the groundwater with chlorine, nitrate [1], and hormones [2]. Industrial activities pollute the vadose zone and the groundwater with radioactive [3], petrochemical [4], and pharmaceutical [5] compounds.