PUBLICATIONS Water Resources Research RESEARCH ARTICLE A new general 1-D vadose zone flow solution method 10.1002/2015WR017126 Fred L. Ogden1, Wencong Lai1, Robert C. Steinke1, Jianting Zhu1, Cary A. Talbot2, and John L. Wilson3 Key Points: 1 2 We have found a new solution of the Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, USA, Coastal and general unsaturated zone flow Hydraulics Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi, problem USA, 3Department of Earth and Environmental Science, New Mexico Tech, Socorro, New Mexico, USA The new solution is a set of ordinary differential equations Numerically simple method is guaranteed to converge and to Abstract We have developed an alternative to the one-dimensional partial differential equation (PDE) conserve mass attributed to Richards’ (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass Correspondence to: conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water- F. L. Ogden, content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater
[email protected] table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content" simulates sharp fronts, and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution Citation: Ogden, F. L., W. Lai, R. C. Steinke, method is explicitly integrable, does not require iterations and therefore has no convergence limits and is J. Zhu, C.