Demonstration of GSSHA Hydrology at Goodwin Creek Experimental Watershed by Charles W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caribou/Poker Creek Research Watershed
Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model Charles W. Downer and Mark D. Wahl Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center HS10.8 A.370. European Geosciences Union General Assembly 2017,Vienna, Austria Moss/Peat as Vegetative Abstract Soils at Caribou/Poker Creeks Research Watershed Land Cover at Caribou/Poker Creeks Research Watershed Roughness 0.18 Vegetation Conceptualization 0.16 As part of a research effort focused on climate change effects on permafrost near • Increased the overland roughness Fairbanks, Alaska, it becam e apparent t hat peat soils, overlain by thick sphagnum values of the peat and sphagnum 0.14 m oss, had a considerable effect on the overall hydrology. Peat lands represent a well beyond the range associat ed 0.12 with the forested landuse. 0.10 confounding mixture of vegetation, soils, and w at er t hat present challenges for Data • Failed to m at ch the timing of the conceptualizing and parametrizing hydrologic models. We employed the Gridded 0.08 peak and overall shape of the Su r f ac e Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the 0.06 observed hydrograph. Caribou Poker Creek Experimental Watershed (CPCRW). Th e model enables 0.04 simulation of surface w at er and groundwater interactions, as well as soil • Over lan d flow equations with 0.02 temperature and frozen ground effects on subsurface w at er movement. A sit e increased roughness poorly represent the lat eral fluxes 0 visit exposed the presence of surface w at er flows indicating a mixed basin t hat 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Time would require both surface and subsurface simulation capability to properly through the peat . -
A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport
EPA 600/R-19/232 | December 2019 | www.epa.gov/research A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport Office of Research and Development Center for Environmental Solutions & Emergency Response | Groundwater Characterization & Remediation Division EPA 600/R-19/232 December 2019 A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport Tadesse Sinshaw National Research Council Resident Research Associate United States Environmental Protection Agency Robert S. Kerr Environmental Research Center 919 Kerr Research Drive, Ada, OK 74820, USA Lifeng Yuan National Research Council Resident Research Associate United States Environmental Protection Agency Robert S. Kerr Environmental Research Center 919 Kerr Research Drive, Ada, OK 74820, USA Kenneth J. Forshay Project Officer United States Environmental Protection Agency Office of Research and Development Center for Environmental Solutions and Emergency Response Groundwater Characterization and Remediation Division 919 Kerr Research Drive, Ada, OK 74820, USA Office of Research and Development Center for Environmental Solutions & Emergency Response | Groundwater Characterization & Remediation Division Disclaimer This document has been reviewed by the U.S. Environmental Protection Agency, Office of Research and Development, and it has been approved for publication as an EPA document. This technical report presents the result of work directed by Project Officer Kenneth J. Forshay (EPA). The research described in this report has been funded wholly or in part by the U.S. Environmental Protection Agency including support for National Research Council Research Associateship Program Fellows Tadesse Sinshaw and Lifeng Yuan. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Quality Assurance This work was performed under an EPA-approved quality assurance project plan, “A Review of Tools for Nutrient Fate and Transport Simulation,” (QA ID #: G-GWERD- 0031787-QP-1-1), approved September 24, 2018. -
A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhang BTS, U.S
Engineering Conferences International ECI Digital Archives Fifty Years Of Watershed Modeling - Past, Present Proceedings And Future 2012 A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhang BTS, U.S. Army Engineer Research and Development Center, USA Billy E. Johnson U.S. Army Engineer Research and Development Center, USA Charles W. Downer U.S. Army Engineer Research and Development Center, USA Follow this and additional works at: http://dc.engconfintl.org/watershed Part of the Civil and Environmental Engineering Commons Recommended Citation Zhonglong Zhang, Billy E. Johnson, and Charles W. Downer, "A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model" in "Fifty Years Of Watershed Modeling - Past, Present And Future", A.S. Donigian, AQUA TERRA onC sultants; Richard Field, US EPA (retired); Michael Baker Jr., Inc. Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/watershed/5 This Article is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fifty Years Of Watershed Modeling - Past, Present And Future by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhanga, Billy E. Johnsonb and Charles W. Downer b a. BTS, U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road, Vicksburg, MS 39180 (Email: [email protected]) b. U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180 (Email: [email protected], [email protected]) 1 Overview 2 Hydrologic Simulation 5 Coupling Hydrology, Sediment and Nutrient Simulation Modules A distributed watershed hydrologic, sediment, nutrient transport and fate model - GSSHA Mass Transport was developed at U.S. -
Catchment Hydrological Modeling with Soil Thermal Dynamics During Seasonal Freeze-Thaw Cycles
water Article Catchment Hydrological Modeling with Soil Thermal Dynamics during Seasonal Freeze-Thaw Cycles Nawa Raj Pradhan 1,*, Charles W. Downer 1 and Sergei Marchenko 2 1 Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, USA; [email protected] 2 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; [email protected] * Correspondence: [email protected] Received: 16 November 2018; Accepted: 2 January 2019; Published: 10 January 2019 Abstract: To account for the seasonal changes in the soil thermal and hydrological dynamics, the soil moisture state physical process defined by the Richards Equation is integrated with the soil thermal state defined by the numerical model of phase change based on the quasi-linear heat conductive equation. The numerical model of phase change is used to compute a vertical soil temperature profile using the soil moisture information from the Richards solver; the soil moisture numerical model, in turn, uses this temperature and phase, information to update hydraulic conductivities in the vertical soil moisture profile. Long-term simulation results from the test case, a head water sub-catchment at the peak of the Caribou Poker Creek Research Watershed, representing the Alaskan permafrost active region, indicated that freezing temperatures decreases infiltration, increases overland flow and peak discharges by increasing the soil ice content and decaying the soil hydraulic conductivity exponentially. Available observed and the simulated soil temperature comparison analysis showed that the root mean square error for the daily maximum soil temperature at 10-cm depth was 4.7 ◦C, and that for the hourly soil temperature at 90-cm and 300-cm was 0.17 ◦C and 0.14 ◦C, respectively. -
Erosion and Sediment Transport Modelling in Shallow Waters: a Review on Approaches, Models and Applications
International Journal of Environmental Research and Public Health Review Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications Mohammad Hajigholizadeh 1,* ID , Assefa M. Melesse 2 ID and Hector R. Fuentes 3 1 Department of Civil and Environmental Engineering, Florida International University, 10555 W Flagler Street, EC3781, Miami, FL 33174, USA 2 Department of Earth and Environment, Florida International University, AHC-5-390, 11200 SW 8th Street Miami, FL 33199, USA; melessea@fiu.edu 3 Department of Civil Engineering and Environmental Engineering, Florida International University, 10555 W Flagler Street, Miami, FL 33174, USA; fuentes@fiu.edu * Correspondence: mhaji002@fiu.edu; Tel.: +1-305-905-3409 Received: 16 January 2018; Accepted: 10 March 2018; Published: 14 March 2018 Abstract: The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. -
Concepts and Dimensionality in Modeling Unsaturated Water Flow and Solute Transport
1 Concepts and dimensionality in modeling unsaturated water flow and solute transport J.C. van Dam#, G.H. de Rooij#, M. Heinen## and F. Stagnitti### Abstract Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes, Richards’ equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macropores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements. Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fractional advection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW). -
Publications
PUBLICATIONS Water Resources Research RESEARCH ARTICLE A new general 1-D vadose zone flow solution method 10.1002/2015WR017126 Fred L. Ogden1, Wencong Lai1, Robert C. Steinke1, Jianting Zhu1, Cary A. Talbot2, and John L. Wilson3 Key Points: 1 2 We have found a new solution of the Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, USA, Coastal and general unsaturated zone flow Hydraulics Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi, problem USA, 3Department of Earth and Environmental Science, New Mexico Tech, Socorro, New Mexico, USA The new solution is a set of ordinary differential equations Numerically simple method is guaranteed to converge and to Abstract We have developed an alternative to the one-dimensional partial differential equation (PDE) conserve mass attributed to Richards’ (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass Correspondence to: conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water- F. L. Ogden, content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater [email protected] table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content" simulates sharp fronts, and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution Citation: Ogden, F. L., W. Lai, R. C. Steinke, method is explicitly integrable, does not require iterations and therefore has no convergence limits and is J. Zhu, C. -
Richards' Equation: Transition Between Constitutive Equations
Journal of Advanced Research in Applied Mechanics 73, Issue 1 (2020) 11-19 Journal of Advanced Research in Applied Mechanics Journal homepage: www.akademiabaru.com/aram.html ISSN: 2289-7895 Richards’ Equation: Transition Between Constitutive Equations and the Mechanics of Water Flow in Unsaturated Open Access Soil Sunny Goh Eng Giap1,*, Noborio Kosuke2 1 Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 2 Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan ABSTRACT Water flow in soil is normally governed by Richards’ partial differential equation. Similarly, the equation can be used to investigate water infiltration in the soil. It is well understood that when water hits the surface of the topsoil, it infiltrates into the soil. However, the mechanics behind the infiltration of water is unknown to many researchers. This study aims to reveal the mechanics behind the well-known Richards’ equation that has been used enormously in governing water flow in unsaturated soil since 1931. A classic case study of Haverkamp’s water infiltration into Yolo Light Clay was used in the study. The Richards’ equation has been discretized using finite difference method and the algebraic solution has been coded into Simply Fortran 2008. The partial differential equation of Richards is supported by two constitutive functions. The functions from Haverkamp and van Genuchten were compared. It is often for researcher to change between the hydraulic functions, which have limitation on the simulation outcome. The solution to overcome the limitation by changing the constitutive function variables was provided. Keywords: water flow in soil; unsaturated soil; water flux; water adsorption Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved 1. -
Workshop on Watershed Modeling with GSSHA June 20-23 National Water Center, Tuscaloosa, Alabama
Workshop on Watershed Modeling with GSSHA June 20-23 National Water Center, Tuscaloosa, Alabama You will learn the basics of: • Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, developed at the U.S. Army Corps of Engineers, Engineering Research and Development Center and the University of Wyoming • Dept. of Defense Watershed Modeling System (WMS), developed by Aquaveo LLC • Spatial data needed to estimate distributed GSSHA model parameters, including data requirements, basics of GSSHA/WMS and how to find and use spatial geographic data to develop GSSHA models using the WMS Hydrologic Model Wizard. The GSSHA model with WMS support constitutes a complete watershed analysis system that can be used for a variety of hydrologic science and engineering computation and design evaluation, such as flood simulation, hydrologic impacts of land use change, best management practice design, and testing of flood mitigation measures. Course Layout: Through a combination of lectures and experiential applications, the course features the spatially distributed modeling components of this system. The course begins with an overview of the capabilities of the WMS to ensure maximum benefit from the hands-on portions of the class. Attendees will learn to use WMS to set up GSSHA models that include overland flow, infiltration, distributed rainfall, hydraulic structures, continuous simulations, flood inundation mapping, and groundwater/surface water interaction. Outcome: Having completed this course, attendees will gain a working knowledge of the U.S. Army Corps of Engineers (USACE), Engineer Research and Development Center (ERDC) GSSHA model that is supported by the Watershed Modeling System (WMS) graphical user interface software. Attendees will also understand how, when, and why to apply the tools to specific studies as well as understand input data requirements. -
ERDC TN-SWWRP-10-3, Improved Soil Erosion and Sediment
ERDC TN-SWWRP-10-3 August 2010 Improved Soil Erosion and Sediment Transport in GS SHA by Charles W. Downer, Fred L. Ogden, Nawa Pradhan, Siqing Liu, and Aaron R. Byrd PURPOSE: To describe the new sediment transport formulation in GSSHA and demonstrate the improved capability in predicting storm-total sediment runoff using a research-quality data set. BACKGROUND: GSSHA simulates overland soil erosion and outputs erosion and deposition for any size class of particles smaller than gravel with specific gravities greater than 1.0. The model first calculates particle detachment by raindrops and surface runoff, and then calculates the transport capacity of surface runoff using one of three user-selected transport equations. The actual sediment transport is determined by comparing the amount of detached soil and the trans- port capacity of surface runoff. Depending on particle size, soil transported to channels is treated either as wash load or bed load, with sizes less than the user specified value of sand treated as wash load and larger sizes treated as bed load. The original GSSHA sediment transport formula- tion was hard-coded to simulate only three size classes of sediment (sand, silt, and clay), each with a specific gravity of silicate minerals (S=2.65). The new GSSHA erosion routines have been generalized to allow simulation of arbitrary size classes smaller than gravels, each with unique specific gravity. Ogden and Heilig (2001) performed a detailed investigation of the CASC2D erosion formulation (Johnson 1997, 2000) and found that it greatly over-predicts storm-total sediment yield for events that are considerably larger than the event used to calibrate the model. -
Analysis of Three-Dimensional Unsaturated-Saturated Flow Induced
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-645 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 9 November 2017 c Author(s) 2017. CC BY 4.0 License. Analysis of three-dimensional unsaturated-saturated flow induced by localized recharge in unconfined aquifers Chia-Hao Chang1, Ching-Sheng Huang2, Hund-Der Yeh1 1Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan 5 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Center for Global Change and Water Cycle, Hohai University, Nanjing, China Correspondence to: Hund-Der Yeh ([email protected]) Abstract. In the process of groundwater recharge, surface water usually enters an aquifer by passing an overlying unsaturated zone. Up to now, little attention has been given to the effect of unsaturated flow on the hydraulic head within the aquifer due 10 to recharge. This paper develops a mathematical model to depict three-dimensional transient unsaturated-saturated flow in an unconfined aquifer with localized recharge on the ground surface. The model contains Richards’ equation for unsaturated flow, a flow equation for saturated formation, and the Gardner constitutive model describing the behavior of unsaturated soil properties. Both flow equations are coupled through the continuity conditions of the head and flux at the water table. The semi- analytical solution to the coupled flow model is derived by the methods of Laplace transform and Fourier cosine transform. A 15 sensitivity analysis is performed to explore the head response to the change in each of the aquifer parameters. A quantitative tool is presented to assess the recharge efficiency signifying the percentage of the water from the recharge to the aquifer. -
Water Resource Software APPLICATION OVERVIEW and REVIEW Public Disclosure Authorized Public Disclosure Authorized
APPLICATION OVERVIEW AND REVIEW Public Disclosure Authorized Water Resource Software APPLICATION OVERVIEW AND REVIEW Public Disclosure Authorized Public Disclosure Authorized By Carter Borden, Anju Gaur and Chabungbam R. Singh March 2016 Public Disclosure Authorized 1 Water Resource Software 2 APPLICATION OVERVIEW AND REVIEW Water Resource Software APPLICATION OVERVIEW AND REVIEW By Carter Borden, Anju Gaur and Chabungbam R. Singh March 2016 3 Water Resource Software Acknowledgements Many individuals and organization have supported this analysis. Specific contributions of note include water resources software developers Deltares, DHI, eWater, NIH, SEI, and USGS responded to a software questionnaire outlining the functionality and applications of their products. Individuals at the Government of India’s Central Water Commission and National Institute of Hydrology provided valuable comments on their experience of WRS applications in India. Kees Bons provided further clarification of the Deltares software functionality. Apruban Mukherjee and Anil Vyas provided additional information on USACE HEC software. Finally, Dr. Daniele Tonina provided a thorough and comprehensive review of the document. 4 APPLICATION OVERVIEW AND REVIEW OVERVIEW The National Hydrology Project (NHP) is an initiative by the Government of India’s Ministry of Water Resources and the World Bank to develop hydro-meteorological monitoring systems and provide scientifically-based tools and design aids to assist implementing agencies in the effective water resources planning