(GSSHA) User's Manual; Version 1.43 for Watershed Modeling

Total Page:16

File Type:pdf, Size:1020Kb

(GSSHA) User's Manual; Version 1.43 for Watershed Modeling System-Wide Water Resources Program ERDC/CHL SR-06-1 Gridded Surface Subsurface Hydrologic Analysis (GSSHA) User’s Manual Version 1.43 for Watershed Modeling System 6.1 Charles W. Downer and Fred L. Ogden September 2006 Coastal and Hydraulics Laboratory Approved for public release; distribution is unlimited. System-Wide Water Resources Program ERDC/CHL SR-06-1 September 2006 Gridded Surface Subsurface Hydrologic Analysis (GSSHA) User’s Manual Version 1.43 for Watershed Modeling System 6.1 Charles W. Downer Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Fred L. Ogden Department of Civil and Architectural Engineering Department 3295, 1000 East University Avenue Laramie, WY 82071-2000 Final report Approved for public release; distribution is unlimited. Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 ERDC/CHL SR-06-1 ii Abstract: The need to simulate surface water flows in watersheds with diverse runoff production mechanisms has led to the development of the physically-based hydrologic model Gridded Surface Subsurface Hydrologic Analysis (GSSHA). GSSHA is a reformulation and enhancement of the two-dimensional, physically based model CASC2D. The GSSHA model is capable of simulating stream flow generated by a variety of sources, including runoff due to infiltration excess and saturated sources areas and seeps, as well as direct interaction between streams and the saturated groundwater. The model employs mass-conserving solutions of partial differential equations. The hydrologic components are closely linked, assuring an overall mass balance. The model has been applied to a diverse variety of projects and has been proven useful for analysis of hydrologic and sedimentation processes, and can provide information needed for designed systems and the potential effects of projects, land-use change, environmental restoration, best management practices, climate change, and related issues. This manual describes the model formulation, model input, and provides information on the practice of hydrologic modeling with GSSHA, and hydrologic modeling in general. DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/CHL SR-06-1 iii Contents Figures and Tables...............................................................................................................................viii Preface.....................................................................................................................................................x Unit Conversion Factors........................................................................................................................xi 1 Introduction..................................................................................................................................... 1 History....................................................................................................................................... 2 Purpose..................................................................................................................................... 3 Differences Between GSSHA and CASC2D ............................................................................ 4 2 GSSHA Model Formulation............................................................................................................ 7 Processes Simulated................................................................................................................ 7 Time-Steps and Process Updates............................................................................................ 8 Inputs ......................................................................................................................................11 3 Project File ....................................................................................................................................14 Required Inputs......................................................................................................................14 Mapping Table - Optional .......................................................................................................15 Overland Flow - Required.......................................................................................................16 Required inputs..........................................................................................................................16 Optional inputs ...........................................................................................................................16 Interception - Optional............................................................................................................ 17 Rainfall Input and Options - Required ................................................................................... 17 Infiltration - Optional ..............................................................................................................18 Green and Ampt (GA).................................................................................................................18 Green and Ampt with Redistribution (GAR) ..............................................................................18 Multilayered Green and Ampt ...................................................................................................19 Richards’ Equation.....................................................................................................................19 Channel Routing - Optional....................................................................................................22 Required inputs..........................................................................................................................22 Initial condition and boundary condition - optional..................................................................22 Stream losses/gains – optional ................................................................................................22 Continuous Simulations – Optional.......................................................................................24 Required inputs..........................................................................................................................24 Seasonal canopy resistance - optional .....................................................................................24 Method of calculating evapotranspiration – required, select one method ............................24 Format of hydrometeorological (HMET) data – required, select one format..........................25 ET parameter assignment – required, select mapping table or GRASS ASCII maps.............25 Saturated Groundwater Flow - Optional................................................................................25 Required inputs..........................................................................................................................25 Optional inputs ...........................................................................................................................27 Optional Output ..........................................................................................................................28 ERDC/CHL SR-06-1 iv Soil Erosion - Optional............................................................................................................28 Soil erosion simulation - required .............................................................................................28 Soil erosion parameters – required, specify in mapping table or GRASS ASCII maps ..........28 Soil erosion factors – required, specify in mapping table or GRASS ASCII maps ..................28 Optional inputs ...........................................................................................................................29 Output Files - Required ..........................................................................................................29 Required output .........................................................................................................................29 Optional output...........................................................................................................................30 Optional output maps ................................................................................................................31 4 General Considerations ...............................................................................................................32 Units........................................................................................................................................32 Grid Size..................................................................................................................................32 Total Event Simulation Time ..................................................................................................33 Coordinate System .................................................................................................................33
Recommended publications
  • Caribou/Poker Creek Research Watershed
    Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model Charles W. Downer and Mark D. Wahl Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center HS10.8 A.370. European Geosciences Union General Assembly 2017,Vienna, Austria Moss/Peat as Vegetative Abstract Soils at Caribou/Poker Creeks Research Watershed Land Cover at Caribou/Poker Creeks Research Watershed Roughness 0.18 Vegetation Conceptualization 0.16 As part of a research effort focused on climate change effects on permafrost near • Increased the overland roughness Fairbanks, Alaska, it becam e apparent t hat peat soils, overlain by thick sphagnum values of the peat and sphagnum 0.14 m oss, had a considerable effect on the overall hydrology. Peat lands represent a well beyond the range associat ed 0.12 with the forested landuse. 0.10 confounding mixture of vegetation, soils, and w at er t hat present challenges for Data • Failed to m at ch the timing of the conceptualizing and parametrizing hydrologic models. We employed the Gridded 0.08 peak and overall shape of the Su r f ac e Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the 0.06 observed hydrograph. Caribou Poker Creek Experimental Watershed (CPCRW). Th e model enables 0.04 simulation of surface w at er and groundwater interactions, as well as soil • Over lan d flow equations with 0.02 temperature and frozen ground effects on subsurface w at er movement. A sit e increased roughness poorly represent the lat eral fluxes 0 visit exposed the presence of surface w at er flows indicating a mixed basin t hat 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Time would require both surface and subsurface simulation capability to properly through the peat .
    [Show full text]
  • A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport
    EPA 600/R-19/232 | December 2019 | www.epa.gov/research A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport Office of Research and Development Center for Environmental Solutions & Emergency Response | Groundwater Characterization & Remediation Division EPA 600/R-19/232 December 2019 A Review of Watershed and Water Quality Tools for Nutrient Fate and Transport Tadesse Sinshaw National Research Council Resident Research Associate United States Environmental Protection Agency Robert S. Kerr Environmental Research Center 919 Kerr Research Drive, Ada, OK 74820, USA Lifeng Yuan National Research Council Resident Research Associate United States Environmental Protection Agency Robert S. Kerr Environmental Research Center 919 Kerr Research Drive, Ada, OK 74820, USA Kenneth J. Forshay Project Officer United States Environmental Protection Agency Office of Research and Development Center for Environmental Solutions and Emergency Response Groundwater Characterization and Remediation Division 919 Kerr Research Drive, Ada, OK 74820, USA Office of Research and Development Center for Environmental Solutions & Emergency Response | Groundwater Characterization & Remediation Division Disclaimer This document has been reviewed by the U.S. Environmental Protection Agency, Office of Research and Development, and it has been approved for publication as an EPA document. This technical report presents the result of work directed by Project Officer Kenneth J. Forshay (EPA). The research described in this report has been funded wholly or in part by the U.S. Environmental Protection Agency including support for National Research Council Research Associateship Program Fellows Tadesse Sinshaw and Lifeng Yuan. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Quality Assurance This work was performed under an EPA-approved quality assurance project plan, “A Review of Tools for Nutrient Fate and Transport Simulation,” (QA ID #: G-GWERD- 0031787-QP-1-1), approved September 24, 2018.
    [Show full text]
  • A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhang BTS, U.S
    Engineering Conferences International ECI Digital Archives Fifty Years Of Watershed Modeling - Past, Present Proceedings And Future 2012 A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhang BTS, U.S. Army Engineer Research and Development Center, USA Billy E. Johnson U.S. Army Engineer Research and Development Center, USA Charles W. Downer U.S. Army Engineer Research and Development Center, USA Follow this and additional works at: http://dc.engconfintl.org/watershed Part of the Civil and Environmental Engineering Commons Recommended Citation Zhonglong Zhang, Billy E. Johnson, and Charles W. Downer, "A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model" in "Fifty Years Of Watershed Modeling - Past, Present And Future", A.S. Donigian, AQUA TERRA onC sultants; Richard Field, US EPA (retired); Michael Baker Jr., Inc. Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/watershed/5 This Article is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fifty Years Of Watershed Modeling - Past, Present And Future by an authorized administrator of ECI Digital Archives. For more information, please contact [email protected]. A Distributed Watershed Hydrologic, Sediment, Nutrient Transport and Fate Model Zhonglong Zhanga, Billy E. Johnsonb and Charles W. Downer b a. BTS, U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road, Vicksburg, MS 39180 (Email: [email protected]) b. U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180 (Email: [email protected], [email protected]) 1 Overview 2 Hydrologic Simulation 5 Coupling Hydrology, Sediment and Nutrient Simulation Modules A distributed watershed hydrologic, sediment, nutrient transport and fate model - GSSHA Mass Transport was developed at U.S.
    [Show full text]
  • Demonstration of GSSHA Hydrology at Goodwin Creek Experimental Watershed by Charles W
    ERDC TN-SWWRP-08-x March 2008 Demonstration of GSSHA Hydrology at Goodwin Creek Experimental Watershed By Charles W. Downer PURPOSE: The purpose of this System-Wide Water Resources (SWWRP) technical note is to describe the application of the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model at the Goodwin Creek Experimental Watershed (GCEW). The purpose of applying the model at this site was to confirm that the hydrologic portions of the code were working properly and were able to achieve accurate results. Application of GSSHA at this site also allows the current model to be compared and contrasted with the performance of previous versions of the model. BACKGROUND: GSSHA is a physics-based, distributed-parameter, hydrology and transport code. As part of SWWRP, the GSSHA model has undergone a series of major improvements and additions including changes to the stream hydraulics, soil moisture accounting, and sediment transport portions of the model. While these additions and improvements enhance the model’s ability to perform additional analysis, it is essential that the new methods and enhanced model be tested to assure that the model is functioning as desired and that the model can reproduce historic results at an equal or superior level to previous versions of GSSHA. The GCEW, a small (21.2-km2) agricultural watershed located in northeast Mississippi, has been the test bed for many features of the GSSHA model. The watershed is instrumented to measure rainfall, hydrometeorological variables, soil moisture, and stream water and sediment discharge (Figure 1). Legend Streamflow gage with rain gage 6 SCAN Station 9 12 5 8 11 Rain gage 3 10 2 4 7 13 14 Scale (m) 1 1000 0 5001000 N Figure 1.
    [Show full text]
  • Catchment Hydrological Modeling with Soil Thermal Dynamics During Seasonal Freeze-Thaw Cycles
    water Article Catchment Hydrological Modeling with Soil Thermal Dynamics during Seasonal Freeze-Thaw Cycles Nawa Raj Pradhan 1,*, Charles W. Downer 1 and Sergei Marchenko 2 1 Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, USA; [email protected] 2 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; [email protected] * Correspondence: [email protected] Received: 16 November 2018; Accepted: 2 January 2019; Published: 10 January 2019 Abstract: To account for the seasonal changes in the soil thermal and hydrological dynamics, the soil moisture state physical process defined by the Richards Equation is integrated with the soil thermal state defined by the numerical model of phase change based on the quasi-linear heat conductive equation. The numerical model of phase change is used to compute a vertical soil temperature profile using the soil moisture information from the Richards solver; the soil moisture numerical model, in turn, uses this temperature and phase, information to update hydraulic conductivities in the vertical soil moisture profile. Long-term simulation results from the test case, a head water sub-catchment at the peak of the Caribou Poker Creek Research Watershed, representing the Alaskan permafrost active region, indicated that freezing temperatures decreases infiltration, increases overland flow and peak discharges by increasing the soil ice content and decaying the soil hydraulic conductivity exponentially. Available observed and the simulated soil temperature comparison analysis showed that the root mean square error for the daily maximum soil temperature at 10-cm depth was 4.7 ◦C, and that for the hourly soil temperature at 90-cm and 300-cm was 0.17 ◦C and 0.14 ◦C, respectively.
    [Show full text]
  • Erosion and Sediment Transport Modelling in Shallow Waters: a Review on Approaches, Models and Applications
    International Journal of Environmental Research and Public Health Review Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications Mohammad Hajigholizadeh 1,* ID , Assefa M. Melesse 2 ID and Hector R. Fuentes 3 1 Department of Civil and Environmental Engineering, Florida International University, 10555 W Flagler Street, EC3781, Miami, FL 33174, USA 2 Department of Earth and Environment, Florida International University, AHC-5-390, 11200 SW 8th Street Miami, FL 33199, USA; melessea@fiu.edu 3 Department of Civil Engineering and Environmental Engineering, Florida International University, 10555 W Flagler Street, Miami, FL 33174, USA; fuentes@fiu.edu * Correspondence: mhaji002@fiu.edu; Tel.: +1-305-905-3409 Received: 16 January 2018; Accepted: 10 March 2018; Published: 14 March 2018 Abstract: The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters.
    [Show full text]
  • Aquaveo News January 2009 Volume 2 - Issue 1
    Aquaveo News January 2009 Volume 2 - Issue 1 INSIDE THIS ISSUE: Arc Hydro Groundwater Tools Version 1.0 Released! 1. Arc Hydro Groundwater Tools ESRI and Aquaveo are pleased to bring you the Arc Hydro Version 1.0 Groundwater Tools to help you better manage your groundwater data Released! within ArcGIS. Based on the Arc Hydro Groundwater data model, the 2. Aquaveo Webinar tools will enable you to take advantage of the ArcGIS platform to Series archive, manage, and visualize your groundwater information. 3. Join the Aquaveo Team Two sets of tools are currently available: 4. Upcoming Training Courses Groundwater Analyst Tools in the Groundwater Analyst will help you import data into your Arc Hydro geodatabase, manage key attributes, and visualize your data. With Groundwater Analyst you will be able to import a variety of datasets (wells, time series, cross sections, volumes) into your EMS-I IS NOW AQUAVEO: Please see Arc Hydro Groundwater on page 2 As of October 1, 2008 ems-i will operate under the name Aquaveo. For Aquaveo Webinar Series more info, please visit our website at: 2009 marks the launch of Aquaveo’s webinar series. The first webinar, www.aquaveo.com/ Spatial Hydrologic Modeling Using GSSHA and WMS , was hosted by merge the Engineering Research and Development Center of the US Army Corps of Engineers and lasted one-hour. Registration was free. A Please see Webinar on page 3 801 302-1400 | [email protected] www.aquaveo.com Page 2 Aquaveo News Arc Hydro Groundwater , continued from page 1 geodatabase, manage symbology of layers in ArcMap and ArcScene, map and plot time series, and create common products such as water level, water quality, and flow direction maps.
    [Show full text]
  • Concepts and Dimensionality in Modeling Unsaturated Water Flow and Solute Transport
    1 Concepts and dimensionality in modeling unsaturated water flow and solute transport J.C. van Dam#, G.H. de Rooij#, M. Heinen## and F. Stagnitti### Abstract Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes, Richards’ equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macropores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements. Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fractional advection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW).
    [Show full text]
  • Publications
    PUBLICATIONS Water Resources Research RESEARCH ARTICLE A new general 1-D vadose zone flow solution method 10.1002/2015WR017126 Fred L. Ogden1, Wencong Lai1, Robert C. Steinke1, Jianting Zhu1, Cary A. Talbot2, and John L. Wilson3 Key Points: 1 2 We have found a new solution of the Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, USA, Coastal and general unsaturated zone flow Hydraulics Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi, problem USA, 3Department of Earth and Environmental Science, New Mexico Tech, Socorro, New Mexico, USA The new solution is a set of ordinary differential equations Numerically simple method is guaranteed to converge and to Abstract We have developed an alternative to the one-dimensional partial differential equation (PDE) conserve mass attributed to Richards’ (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass Correspondence to: conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water- F. L. Ogden, content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater [email protected] table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content" simulates sharp fronts, and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution Citation: Ogden, F. L., W. Lai, R. C. Steinke, method is explicitly integrable, does not require iterations and therefore has no convergence limits and is J. Zhu, C.
    [Show full text]
  • Richards' Equation: Transition Between Constitutive Equations
    Journal of Advanced Research in Applied Mechanics 73, Issue 1 (2020) 11-19 Journal of Advanced Research in Applied Mechanics Journal homepage: www.akademiabaru.com/aram.html ISSN: 2289-7895 Richards’ Equation: Transition Between Constitutive Equations and the Mechanics of Water Flow in Unsaturated Open Access Soil Sunny Goh Eng Giap1,*, Noborio Kosuke2 1 Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 2 Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan ABSTRACT Water flow in soil is normally governed by Richards’ partial differential equation. Similarly, the equation can be used to investigate water infiltration in the soil. It is well understood that when water hits the surface of the topsoil, it infiltrates into the soil. However, the mechanics behind the infiltration of water is unknown to many researchers. This study aims to reveal the mechanics behind the well-known Richards’ equation that has been used enormously in governing water flow in unsaturated soil since 1931. A classic case study of Haverkamp’s water infiltration into Yolo Light Clay was used in the study. The Richards’ equation has been discretized using finite difference method and the algebraic solution has been coded into Simply Fortran 2008. The partial differential equation of Richards is supported by two constitutive functions. The functions from Haverkamp and van Genuchten were compared. It is often for researcher to change between the hydraulic functions, which have limitation on the simulation outcome. The solution to overcome the limitation by changing the constitutive function variables was provided. Keywords: water flow in soil; unsaturated soil; water flux; water adsorption Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved 1.
    [Show full text]
  • Insight MFR By
    Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC.
    [Show full text]
  • Workshop on Watershed Modeling with GSSHA June 20-23 National Water Center, Tuscaloosa, Alabama
    Workshop on Watershed Modeling with GSSHA June 20-23 National Water Center, Tuscaloosa, Alabama You will learn the basics of: • Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model, developed at the U.S. Army Corps of Engineers, Engineering Research and Development Center and the University of Wyoming • Dept. of Defense Watershed Modeling System (WMS), developed by Aquaveo LLC • Spatial data needed to estimate distributed GSSHA model parameters, including data requirements, basics of GSSHA/WMS and how to find and use spatial geographic data to develop GSSHA models using the WMS Hydrologic Model Wizard. The GSSHA model with WMS support constitutes a complete watershed analysis system that can be used for a variety of hydrologic science and engineering computation and design evaluation, such as flood simulation, hydrologic impacts of land use change, best management practice design, and testing of flood mitigation measures. Course Layout: Through a combination of lectures and experiential applications, the course features the spatially distributed modeling components of this system. The course begins with an overview of the capabilities of the WMS to ensure maximum benefit from the hands-on portions of the class. Attendees will learn to use WMS to set up GSSHA models that include overland flow, infiltration, distributed rainfall, hydraulic structures, continuous simulations, flood inundation mapping, and groundwater/surface water interaction. Outcome: Having completed this course, attendees will gain a working knowledge of the U.S. Army Corps of Engineers (USACE), Engineer Research and Development Center (ERDC) GSSHA model that is supported by the Watershed Modeling System (WMS) graphical user interface software. Attendees will also understand how, when, and why to apply the tools to specific studies as well as understand input data requirements.
    [Show full text]