Bibliography HYDRAULIC GRADIENT HYDRAULIC HEAD Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography HYDRAULIC GRADIENT HYDRAULIC HEAD Bibliography 368 HYDRAULIC GRADIENT Bibliography studying or predicting site-specific water flow and solute Introduction to Environmental Soil Physics (First Edition) 2003 transport processes in the subsurface. This includes using Elsevier Inc. Daniel Hillel (ed.) http://www.sciencedirect.com/ models as tools for designing, testing, or implementing science/book/9780123486554 soil, water, and crop management practices that optimize water use efficiency and minimize soil and water pollution by agricultural and other contaminants. Models are equally needed for designing or remediating industrial HYDRAULIC GRADIENT waste disposal sites and landfills, or assessing the for long-term stewardship of nuclear waste repositories. The slope of the hydraulic grade line which indicates the Predictive models for flow in variably saturated soils are change in pressure head per unit of distance. generally based on the Richards equation, which combines the Darcy–Buckingham equation for the fluid flux with a mass conservation equation to give (Richards, 1931): HYDRAULIC HEAD @yðhÞ @ @h ¼ KðhÞ À KðhÞ (1) @t @z @z The sum of the pressure head (hydrostatic pressure rela- tive to atmospheric pressure) and the gravitational head in which y is the volumetric water content (L3 LÀ3), h is (elevation relative to a reference level). The gradient of the pressure head (L), t is time (T), z is soil depth (positive the hydraulic head is the driving force for water flow in down), and K is the hydraulic conductivity (L TÀ1). porous media. Equation 1 holds for one-dimensional vertical flow; similar equations can be formulated for multidimensional flow Bibliography problems. The Richards equation contains two constitutive Introduction to Environmental Soil Physics (First Edition) 2003 relationships, the soil water retention curve, y(h), and the Elsevier Inc. Daniel Hillel (ed.) http://www.sciencedirect.com/ unsaturated soil hydraulic conductivity function, K(h). science/book/9780123486554 These hydraulic functions are both strongly nonlinear func- tions of h. They are discussed in detail below. HYDRAULIC PROPERTIES OF UNSATURATED SOILS Water retention function The soil water retention curve, y(h), describes the relation- Martinus Th. van Genuchten1, Yakov A. Pachepsky2 ship between the water content, y, and the energy status of 1Department of Mechanical Engineering, COPPE/LTTC, water at a given location in the soil. Many other names may be found in the literature, including soil moisture Federal University of Rio de Janeiro, UFRJ, Rio de – Janeiro, Brazil characteristic curve, the capillary pressure saturation 2Environmental Microbial and Food Safety Laboratory, relationship, and the pF curve. The retention curve histor- Animal and Natural Resource Institute, Beltsville ically was often given in terms of pF, which is defined as Agricultural Research Center, USDA-ARS, Beltsville, the negative logarithm (base 10) of the absolute value of MD, USA the pressure head measured in centimeters. In the unsatu- rated zone, water is subject to both capillary forces in soil pores and adsorption onto solid phase surfaces. This leads Definition to negative values of the pressure head (or matric head) Hydraulic Properties of Unsaturated Soils. Properties relative to free water, or a positive suction or tension. reflecting the ability of a soil to retain or transmit water As opposed to unsaturated soils, the pressure head h is and its dissolved constituents. positive in a saturated system. More formally, the pressure head is defined as the difference between the pressures of Introduction the air phase and the liquid phase. Capillary forces are the Many agrophysical applications require knowledge of the result of a complex set of interactions between the solid hydraulic properties of unsaturated soils. These properties and liquid phases involving the surface tension of the liq- reflect the ability of a soil to retain or transmit water and uid phase, the contact angle between the solid and liquid its dissolved constituents. For example, they affect the phases, and the diameter of pores. partitioning of rainfall and irrigation water into infiltration Knowledge of y(h) is essential for the hydraulic charac- and runoff at the soil surface, the rate and amount of redis- terization of a soil, since it relates an energy density tribution of water in a soil profile, available water in the (potential) to a capacity (water content). Rather than using soil root zone, and recharge to or capillary rise from the pressure head (energy per unit weight of water), many the groundwater table, among many other processes in agrophysical applications use the pressure or matric the unsaturated or vadose zone between the soil surface potential (energy per unit volume of water, usually mea- and the groundwater table. The hydraulic properties are sured in Pascal, Pa), cm = rwgh, where rw is the density also critical components of mathematical models for of water (MLÀ3) and g the acceleration of gravity (L TÀ2). HYDRAULIC PROPERTIES OF UNSATURATED SOILS 369 Figure 1 shows typical soil water retention curves for initially very dry sample to produce the main wetting relatively coarse-textured (e.g., sand and loamy sand), curve, which is generally displaced by a factor of medium-textured (e.g., loam and sandy loam), and fine- 1.5–2.0 toward higher pressure heads closer to saturation. textured (e.g., clay loam, silty loam, and clay) soils. The This phenomenon of having different wetting and drying curves in Figure 1 may be interpreted as showing the equi- curves, including primary and secondary scanning curves librium water content distribution above a relatively deep is referred to hysteresis. Hysteresis is caused by the fact water table where the pressure head is zero and the soil that drainage is determined mostly by the smaller pore in fully saturated. The plots in Figure 1 show that coarse- a certain pore sequence, and wetting by the larger pores textured soils lose their water relatively quickly (at small (this effect is often referred to as the ink bottle effect). negative pressure heads) and abruptly above the water Other factors contributing to hysteresis are the presence table, while fine-textured soils lose their water much more of different liquid–solid contact angles for advancing gradually. This reflects the particle or pore-size distribu- and receding water menisci, air entrapment during wet- tion of the medium involved. While the majority of pores ting, and possible shrink–swell phenomena of some soils. in coarse-textured soils have larger diameters and thus drain at relatively small negative pressures, the majority Hydraulic conductivity function of pores in fine-textured soils do not drain until very large tensions (negative pressures) are applied. The hydraulic conductivity characterizes the ability of As indicated by the plots in Figure 1, the water content a soil to transmit water. Its value depends on many factors varies between some maximum value, the saturated water such as the pore-size distribution of the medium, and the content, y , and some small value, often referred to as tortuosity, shape, roughness, and degree of interconnec- s tedness of the pores. The hydraulic conductivity decreases the residual (or irreducible) water content, yr. As a first approximation and on intuitive ground, the saturated considerably as soil becomes unsaturated since less pore water content is equal to the porosity, and y equal to zero. space is filled with water, the flow paths become increas- r ingly tortuous, and drag forces between the fluid and the In reality, however, the saturated water content, ys, of soils is generally smaller than the porosity because of entrapped solid phases increase. The unsaturated hydraulic conductivity function gives and dissolved air. The residual water content yr is likely to be larger than zero, especially for fine-textured soils with the dependency of the hydraulic conductivity on the water their large surface areas, because of the presence of content, K(y), or pressure head, K(h). Figure 2 presents examples of typical K(y) and K(h) functions for relatively adsorbed water. Most often ys and especially yr are treated as fitting parameters without much physical significance. coarse-, medium-, and fine-textured soils. Notice that the Soil water retention curves such as shown in Figure 1 hydraulic conductivity at saturation is significantly larger are not unique but depend on the history of wetting and for coarse-textured soils than fine-textured soils. This differ- drying. Most often, the soil water retention curve is deter- ence is often several orders of magnitude. Also notice mined by gradually desaturating an initially saturated soil that the hydraulic conductivity decreases very significantly by applying increasingly higher suctions, thus producing as the soil becomes unsaturated. This decrease, when a main drying curve. One could similarly slowly wet an expressed as a function of the pressure head (Figure 2; right), is much more dramatic for the coarse-textured soils. The decrease for coarse-textured soils is so large that at 100,000 a certain pressure head the hydraulic conductivity becomes smaller than the conductivity of the fine-textured soil. The 10,000 water content where the conductivity asymptotically becomes zero (Figure 2; left) is often used as an alternative working definition for the residual water content, y . 1,000 r Soil water diffusivity 100 Another hydraulic function often used in theoretical and management application of unsaturated flow theories is À Pressure head, |h| (cm) 10 the soil water diffusivity, D(y), (L2 T 1), which is defined as dh 1 DðyÞ¼KðyÞ : (2) 0.0 0.1 0.2 0.3 0.4 0.5 dy Volumetric water content [–] This function appears when Equation 1 is transformed into a water-content-based equation in which y is now Hydraulic Properties of Unsaturated Soils, Figure 1 Typical the dependent variable: soil water retention curves for relatively coarse- (solid line), medium- (dashed line), and fine-textured (dotted line) soils. The @ @ @ y ¼ ð Þ h À ð Þ : curves were obtained using Equation 6a assuming hydraulic @ @ D y @ K y (3) parameter values as listed in Table 1.
Recommended publications
  • Hydrogeology
    Hydrogeology Principles of Groundwater Flow Lecture 3 1 Hydrostatic pressure The total force acting at the bottom of the prism with area A is Dividing both sides by the area, A ,of the prism 1 2 Hydrostatic Pressure Top of the atmosphere Thus a positive suction corresponds to a negative gage pressure. The dimensions of pressure are F/L2, that is Newton per square meter or pascal (Pa), kiloNewton per square meter or kilopascal (kPa) in SI units Point A is in the saturated zone and the gage pressure is positive. Point B is in the unsaturated zone and the gage pressure is negative. This negative pressure is referred to as a suction or tension. 3 Hydraulic Head The law of hydrostatics states that pressure p can be expressed in terms of height of liquid h measured from the water table (assuming that groundwater is at rest or moving horizontally). This height is called the pressure head: For point A the quantity h is positive whereas it is negative for point B. h = Pf /ϒf = Pf /ρg If the medium is saturated, pore pressure, p, can be measured by the pressure head, h = pf /γf in a piezometer, a nonflowing well. The difference between the altitude of the well, H, and the depth to the water inside the well is the total head, h , at the well. i 2 4 Energy in Groundwater • Groundwater possess mechanical energy in the form of kinetic energy, gravitational potential energy and energy of fluid pressure. • Because the amount of energy vary from place-­­to-­­place, groundwater is forced to move from one region to another in order to neutralize the energy differences.
    [Show full text]
  • CPT-Geoenviron-Guide-2Nd-Edition
    Engineering Units Multiples Micro (P) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – Vvo Excess pore pressure: 'u = u2 – u0 Pore pressure ratio: Bq = 'u / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geo-Environmental Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 2nd Edition December 2008 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • Demonstration of GSSHA Hydrology at Goodwin Creek Experimental Watershed by Charles W
    ERDC TN-SWWRP-08-x March 2008 Demonstration of GSSHA Hydrology at Goodwin Creek Experimental Watershed By Charles W. Downer PURPOSE: The purpose of this System-Wide Water Resources (SWWRP) technical note is to describe the application of the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model at the Goodwin Creek Experimental Watershed (GCEW). The purpose of applying the model at this site was to confirm that the hydrologic portions of the code were working properly and were able to achieve accurate results. Application of GSSHA at this site also allows the current model to be compared and contrasted with the performance of previous versions of the model. BACKGROUND: GSSHA is a physics-based, distributed-parameter, hydrology and transport code. As part of SWWRP, the GSSHA model has undergone a series of major improvements and additions including changes to the stream hydraulics, soil moisture accounting, and sediment transport portions of the model. While these additions and improvements enhance the model’s ability to perform additional analysis, it is essential that the new methods and enhanced model be tested to assure that the model is functioning as desired and that the model can reproduce historic results at an equal or superior level to previous versions of GSSHA. The GCEW, a small (21.2-km2) agricultural watershed located in northeast Mississippi, has been the test bed for many features of the GSSHA model. The watershed is instrumented to measure rainfall, hydrometeorological variables, soil moisture, and stream water and sediment discharge (Figure 1). Legend Streamflow gage with rain gage 6 SCAN Station 9 12 5 8 11 Rain gage 3 10 2 4 7 13 14 Scale (m) 1 1000 0 5001000 N Figure 1.
    [Show full text]
  • Catchment Hydrological Modeling with Soil Thermal Dynamics During Seasonal Freeze-Thaw Cycles
    water Article Catchment Hydrological Modeling with Soil Thermal Dynamics during Seasonal Freeze-Thaw Cycles Nawa Raj Pradhan 1,*, Charles W. Downer 1 and Sergei Marchenko 2 1 Coastal and Hydraulics Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, USA; [email protected] 2 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; [email protected] * Correspondence: [email protected] Received: 16 November 2018; Accepted: 2 January 2019; Published: 10 January 2019 Abstract: To account for the seasonal changes in the soil thermal and hydrological dynamics, the soil moisture state physical process defined by the Richards Equation is integrated with the soil thermal state defined by the numerical model of phase change based on the quasi-linear heat conductive equation. The numerical model of phase change is used to compute a vertical soil temperature profile using the soil moisture information from the Richards solver; the soil moisture numerical model, in turn, uses this temperature and phase, information to update hydraulic conductivities in the vertical soil moisture profile. Long-term simulation results from the test case, a head water sub-catchment at the peak of the Caribou Poker Creek Research Watershed, representing the Alaskan permafrost active region, indicated that freezing temperatures decreases infiltration, increases overland flow and peak discharges by increasing the soil ice content and decaying the soil hydraulic conductivity exponentially. Available observed and the simulated soil temperature comparison analysis showed that the root mean square error for the daily maximum soil temperature at 10-cm depth was 4.7 ◦C, and that for the hourly soil temperature at 90-cm and 300-cm was 0.17 ◦C and 0.14 ◦C, respectively.
    [Show full text]
  • Table of Common Symbols Used in Hydrogeology
    Common Symbols used in GEOL 473/573 A Area [L2] b Saturated thickness of an aquifer [L] d Diameter [L] e void ratio (dimensionless) or e1 is a constant = 2.718281828... f Number of head drops in a flow of net F Force [M L T-2 ] g Acceleration due to gravity [9.81 m/s2] h Hydraulic head [L] (Total hydraulic head; h = ψ + z) ho Initial hydraulic head [L], generally an initial condition or a boundary condition dh/dL Hydraulic gradient [dimensionless] sometimes expressed as i 2 ki Intrinsic permeability [L ] K Hydraulic conductivity [L T-1] -1 Kx, Ky , Kz Hydraulic conductivity in the x, y, or z direction [L T ] L Length from one point to another [L] n Porosity [dimensionless] ne Effective porosity [dimensionless] q Specific discharge [L T-1] (Darcy flux or Darcy velocity) -1 qx, qy, qz Specific discharge in the x, y, or z direction [L T ] Q Flow rate [L3 T-1] (discharge) p Number of stream tubes in a flow of net P Pressure [M L-1T-2] r Radial coordinate [L] rw Radius of well over screened interval [L] Re Reynolds’ number [dimensionless] s Drawdown in an aquifer [L] S Storativity [dimensionless] (Coefficient of storage) -1 Ss Specific storage [L ] Sy Specific yield [dimensionless] t Time [T] T Transmissivity [L2 T-1] or Temperature (degrees) u Theis’ number [dimensionless} or used for fluid pressure (P) in engineering v Pore-water velocity [L T-1] (Average linear velocity) V Volume [L3] 3 VT Total volume of a soil core [L ] 3 Vv Volume voids in a soil core [L ] 3 Vw Volume of water in the voids of a soil core [L ] Vs Volume soilds in a soil
    [Show full text]
  • Darcy's Law and Hydraulic Head
    Darcy’s Law and Hydraulic Head 1. Hydraulic Head hh12− QK= A h L p1 h1 h2 h1 and h2 are hydraulic heads associated with hp2 points 1 and 2. Q The hydraulic head, or z1 total head, is a measure z2 of the potential of the datum water fluid at the measurement point. “Potential of a fluid at a specific point is the work required to transform a unit of mass of fluid from an arbitrarily chosen state to the state under consideration.” Three Types of Potentials A. Pressure potential work required to raise the water pressure 1 P 1 P m P W1 = VdP = dP = ∫0 ∫0 m m ρ w ρ w ρw : density of water assumed to be independent of pressure V: volume z = z P = P v = v Current state z = 0 P = 0 v = 0 Reference state B. Elevation potential work required to raise the elevation 1 Z W ==mgdz gz 2 m ∫0 C. Kinetic potential work required to raise the velocity (dz = vdt) 2 11ZZdv vv W ==madz m dz == vdv 3 m ∫∫∫00m dt 02 Total potential: Total [hydraulic] head: P v 2 Φ P v 2 h == ++z Φ= +gz + g ρ g 2g ρw 2 w Unit [L2T-1] Unit [L] 2 Total head or P v hydraulic head: h =++z ρw g 2g Kinetic term pressure elevation [L] head [L] Piezometer P1 P2 ρg ρg h1 h2 z1 z2 datum A fluid moves from where the total head is higher to where it is lower. For an ideal fluid (frictionless and incompressible), the total head would stay constant.
    [Show full text]
  • Concepts and Dimensionality in Modeling Unsaturated Water Flow and Solute Transport
    1 Concepts and dimensionality in modeling unsaturated water flow and solute transport J.C. van Dam#, G.H. de Rooij#, M. Heinen## and F. Stagnitti### Abstract Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes, Richards’ equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macropores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements. Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fractional advection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW).
    [Show full text]
  • Publications
    PUBLICATIONS Water Resources Research RESEARCH ARTICLE A new general 1-D vadose zone flow solution method 10.1002/2015WR017126 Fred L. Ogden1, Wencong Lai1, Robert C. Steinke1, Jianting Zhu1, Cary A. Talbot2, and John L. Wilson3 Key Points: 1 2 We have found a new solution of the Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, USA, Coastal and general unsaturated zone flow Hydraulics Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Vicksburg, Mississippi, problem USA, 3Department of Earth and Environmental Science, New Mexico Tech, Socorro, New Mexico, USA The new solution is a set of ordinary differential equations Numerically simple method is guaranteed to converge and to Abstract We have developed an alternative to the one-dimensional partial differential equation (PDE) conserve mass attributed to Richards’ (1931) that describes unsaturated porous media flow in homogeneous soil layers. Our solution is a set of three ordinary differential equations (ODEs) derived from unsaturated flux and mass Correspondence to: conservation principles. We used a hodograph transformation, the Method of Lines, and a finite water- F. L. Ogden, content discretization to produce ODEs that accurately simulate infiltration, falling slugs, and groundwater [email protected] table dynamic effects on vadose zone fluxes. This formulation, which we refer to as "finite water-content" simulates sharp fronts, and is guaranteed to conserve mass using a finite-volume solution. Our ODE solution Citation: Ogden, F. L., W. Lai, R. C. Steinke, method is explicitly integrable, does not require iterations and therefore has no convergence limits and is J. Zhu, C.
    [Show full text]
  • Comparative Performance Evaluation of Pelton Wheel and Cross Flow Turbines for Power Generation
    EUROPEAN MECHANICAL SCIENCE Research Paper e-ISSN: 2587-1110 Comparative Performance Evaluation of Pelton Wheel and Cross Flow Turbines for Power Generation Oyebode O. O.1* and Olaoye J. O.2 1Department of Food, Agricultural and Biological Engineering, Kwara State University, Malete, Kwara State, Nigeria. 2Department of Agricultural and Biosystems Engineering, University of Ilorin, Ilorin, Kwara State, Nigeria. ORCID: Oyebode (0000-0003-1094-1149) Abstract The performance of two micro hydro power turbines (Pelton Wheel and Cross Flow Turbines) were evaluated at the University of Ilorin (UNILORIN) dam. The Dam has a net head of 4 m, flow rate of 0.017m3 and theoretical hydropower energy of 668W. The two turbines were tested and the optimized value of operating conditions namely; angle of inclination (15o above tangent, tangential and 15o below tangent), height to impact point (200mm, 250mm and 300mm) and length to impact point (50mm, 100mm and 150mm) were pre-set at their various levels for both Turbines. The optimum values of the process output or measured parameters were determined statistically using a 33X2 factorial experiment in three replicates. An optimum Turbine speed (538.38rpm) in off load condition was achieved at 250mm height to impact point, 150mm length to impact point and angle at tangential inclination. Similar combination also yielded an optimum turbine torque of 46.16kNm for Pelton Wheel Turbine. For the Crossflow Turbine, an optimum turbine speed of 330.09rpm was achieved by pre-setting 250mm height to impact point, 100mm length to impact point and 15º below tangent. Same combination also yielded an optimum turbine torque of 39.07kNm.
    [Show full text]
  • Richards' Equation: Transition Between Constitutive Equations
    Journal of Advanced Research in Applied Mechanics 73, Issue 1 (2020) 11-19 Journal of Advanced Research in Applied Mechanics Journal homepage: www.akademiabaru.com/aram.html ISSN: 2289-7895 Richards’ Equation: Transition Between Constitutive Equations and the Mechanics of Water Flow in Unsaturated Open Access Soil Sunny Goh Eng Giap1,*, Noborio Kosuke2 1 Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia 2 Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan ABSTRACT Water flow in soil is normally governed by Richards’ partial differential equation. Similarly, the equation can be used to investigate water infiltration in the soil. It is well understood that when water hits the surface of the topsoil, it infiltrates into the soil. However, the mechanics behind the infiltration of water is unknown to many researchers. This study aims to reveal the mechanics behind the well-known Richards’ equation that has been used enormously in governing water flow in unsaturated soil since 1931. A classic case study of Haverkamp’s water infiltration into Yolo Light Clay was used in the study. The Richards’ equation has been discretized using finite difference method and the algebraic solution has been coded into Simply Fortran 2008. The partial differential equation of Richards is supported by two constitutive functions. The functions from Haverkamp and van Genuchten were compared. It is often for researcher to change between the hydraulic functions, which have limitation on the simulation outcome. The solution to overcome the limitation by changing the constitutive function variables was provided. Keywords: water flow in soil; unsaturated soil; water flux; water adsorption Copyright © 2020 PENERBIT AKADEMIA BARU - All rights reserved 1.
    [Show full text]
  • Helical Turbine for Hydropower
    Tidewalker Engineering / Optimization of GHT Production Marine and Hydrokinetic Technology Readiness Advancement Initiative Funding Opportunity Announcement Number: DE-FOA-0000293 CFDA Number: 81.087 PROJECT NARRATIVE Tidewalker Engineering Trescott, Maine Title: Optimization of Gorlov Helical Turbine Production June 2010 Table of Contents: SUBJECT PAGE NUMBER Introduction: Project Narrative 2 Project Objectives 3 Merit Review Criteria Discussion 7 Project Timetable 13 Relevance and Outcomes / Impacts 14 Role of Participants 14 Facilities and Other Resources 15 Equipment 15 Bibliography and References 16 Appendix- A / Letter of Commitment 17 Appendix – B / Velocity Measurements 18 Appendix – C / GHT Applications 19 Appendix – D / Cost Sharing Grant 32 1 Tidewalker Engineering / Optimization of GHT Production Project Narrative: Under this proposal Tidewalker Engineering with the assistance of Dr. Alexander Gorlov and other specialists will investigate the feasibility of placing a hydro-kinetic device into a flexible dam system to generate electricity from tidal flows at sites with a substantial tidal range (average value of 18’). The study will also include the design of a turbo-generator unit which optimizes electrical production from this proposed mode of operation. Environmental issues associated with the placement of a flexible dam into a tidal flow will be analyzed in terms of regulatory licensing requirements. The applicability of this proposed mode of operation will be addressed as part of expected project benefits from the development potential of this concept. The eligibility standard as expressed in published responses within the Federal Connect network for this grant application directly addressed the issue of diversionary structures as excerpted below: DOE will not consider any application under this FOA for the development of a technology that would require blocking or severely altering existing tidal or river flows, as this would be considered a dam or diversionary structure.
    [Show full text]
  • Salt Flow Example
    GEO-SLOPE International Ltd, Calgary, Alberta, Canada www.geo-slope.com Salt Flow Example 1 Introduction Total hydraulic head consists of elevation head and pressure head. Pressure head is dependent on the density of the pore fluid, which is a function of both temperature and chemical composition. For density- dependent groundwater flow problems, the driving forces for flow include the hydraulic gradient, as well as a buoyancy force term caused by variations in density. Consequently, spatial variations in salinity generate a total hydraulic head gradient that governs density-dependent groundwater flow. The objective of this detailed example is to verify, by means of some simple calculations, the hydraulic head and groundwater fluxes calculated by CTRAN/W for coupled one-dimensional density-dependent groundwater flow problems. 2 Background Only a brief summary of the theory for density-dependent flow is provided here. A more comprehensive review can be found in the CTRAN/W Engineering book and the literature (e.g. Fetter, 1998; Frind, 1982a, b). As noted in the introduction, the pore fluid density affects the pressure head component of total hydraulic head. Consider the two point measurements of hydraulic head shown in Figure 1. The actual hydraulic pressure at P1 in the saline-water aquifer is P1 ss gh [1] where s = saline pore fluid density; g = acceleration due to gravity; and, hs = height of saline water in the piezometer. Figure 1 Equivalent fresh water head (after Fetter, 1988) Assume that another piezometer was completed in the saline-water aquifer at P2 , but that it was filled with fresh water.
    [Show full text]