Turbine Wheel-A Hydropower Converter for Head Differences

Total Page:16

File Type:pdf, Size:1020Kb

Turbine Wheel-A Hydropower Converter for Head Differences University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk School of Civil Engineering and the Environment Turbine wheel - a hydropower converter for head differences between 2.5 and 5 m Ph.D Thesis Helmizar Supervisors: Dr.Gerald Müller February 2016 2 CONTENTS Academic Thesis: Declaration Of Authorship ......................................................................... 18 Acknowledgments.................................................................................................................... 19 Abstract .................................................................................................................................... 20 Chapter 1 .................................................................................................................................. 21 Introduction .............................................................................................................................. 21 1.1 Background ............................................................................................................... 21 1.2 Aim and Objectives ................................................................................................... 24 Chapter 2 .................................................................................................................................. 26 Literature Review..................................................................................................................... 26 2.1 Hydropower energy as a new renewable energy sources .......................................... 26 2.1.1 Introduction to Hydropower .............................................................................. 26 2.1.2 Potency of Hydropower ..................................................................................... 27 2.1.3 The need for small scale hydro power technology ............................................ 32 2.2 Existing Small Scale Hydropower Technology ........................................................ 35 2.2.1 Water Wheel Technology .................................................................................. 36 2.2.2 Turbine Technology ........................................................................................... 44 2.2.3 Novel Technology For Low Head Water ........................................................... 61 2.3 Discussion ................................................................................................................. 67 1 2.4 Research on hydrostatic pressure converter/machine/ (HPC/M) .............................. 70 2.4.1 Research on hydrostatic pressure converter (HPC)................................................... 71 2.4.1.1 Type one HPC ................................................................................................ 71 2.4.1.2 Type two HPC ................................................................................................ 74 2.4.2 Research on hydrostatic pressure machine (HPM) ................................................... 79 2.5 Relevance of previous theory to the current research ............................................... 85 2.5.1 Potential machine ...................................................................................................... 85 2.5.2 Water wheel with lower shroud ................................................................................ 87 2.5.3 Torque analysis discussion ........................................................................................ 89 2.5.3.1 Case of simple blade ...................................................................................... 90 2.5.3.2 Case of curving blade ..................................................................................... 96 Chapter 3 .................................................................................................................................. 98 Examining The Effect of The Upper Shroud To The Performance of Water Wheel. ............. 98 3.1 Testing Model ........................................................................................................... 98 3.2 Determining blade dimension ................................................................................. 101 3.3 Equipment and facility ............................................................................................ 103 3.4 Experimental Parameters......................................................................................... 106 3.5 Result ....................................................................................................................... 110 3.5.1 Measured Power vs Rotational Speed.............................................................. 110 3.5.2 Leakage ............................................................................................................ 111 3.5.3 Efficiency vs Tangential Velocity ................................................................... 113 2 3.6 Discussion on preliminary test ................................................................................ 114 3.7 Summary from preliminary test .............................................................................. 116 Chapter 4 ................................................................................................................................ 118 Electric Power Take off And Modification of The Turbine Wheel ....................................... 118 4.1 Experiments to improve performance of turbine wheel .......................................... 118 4.2 Cut-in half wheel ..................................................................................................... 119 4.3 Preliminary research findings and their impact on the following research ............. 122 4.4 Equipment and Facility for cut-in half water wheel ................................................ 124 4.5 Experimental Parameters and Set-up ...................................................................... 136 4.6 Result and Discussion ............................................................................................. 148 4.6.1 Comparison between the electric power take off and the Prony brake method ...... 149 150 4.6.2 The effect of the hub diameter on the performance of the water wheel.................. 152 4.6.3 The effect of the number of blades on the performance of the turbine wheel ........ 167 4.6.4 The effect of the baffle on the performance of the water wheel ............................. 173 4.7 Discussion and conclusion ...................................................................................... 177 4.7.1 Discussion ............................................................................................................... 177 4.7.2 Conclusion ............................................................................................................... 178 Chapter 5 ................................................................................................................................ 179 Torque meter Measurement Method And Upscaling Turbine Wheel ................................... 179 5.1 Measuring Power output by using Torque meter .................................................... 181 5.2 Equipment and Facility ........................................................................................... 182 5.3 Result ....................................................................................................................... 189 5.3.1 Power VS RPM ....................................................................................................... 189 3 5.3.2 Efficiency excluding leakage .................................................................................. 192 5.3.3 Power vs Torque...................................................................................................... 193 5.4 Theoretical Power Output for turbine wheel ........................................................... 194 Losses ............................................................................................................................. 198 Efficiency ........................................................................................................................ 198 Graph plotting ................................................................................................................. 198 Chapter 6 ................................................................................................................................ 202 Discussion .............................................................................................................................. 202 6.1 Comparison between the turbine wheel and previous research .............................
Recommended publications
  • Vol2 Case History English(1-206)
    Renewal & Upgrading of Hydropower Plants IEA Hydro Technical Report _______________________________________ Volume 2: Case Histories Report March 2016 IEA Hydropower Agreement: Annex XI AUSTRALIA USA Table of contents㸦Volume 2㸧 ࠙Japanࠚ Jp. 1 : Houri #2 (Miyazaki Prefecture) P 1 㹼 P 5ۑ Jp. 2 : Kikka (Kumamoto Prefecture) P 6 㹼 P 10ۑ Jp. 3 : Hidaka River System (Hokkaido Electric Power Company) P 11 㹼 P 19ۑ Jp. 4 : Kurobe River System (Kansai Electric Power Company) P 20 㹼 P 28ۑ Jp. 5 : Kiso River System (Kansai Electric Power Company) P 29 㹼 P 37ۑ Jp. 6 : Ontake (Kansai Electric Power Company) P 38 㹼 P 46ۑ Jp. 7 : Shin-Kuronagi (Kansai Electric Power Company) P 47 㹼 P 52ۑ Jp. 8 : Okutataragi (Kansai Electric Power Company) P 53 㹼 P 63ۑ Jp. 9 : Okuyoshino / Asahi Dam (Kansai Electric Power Company) P 64 㹼 P 72ۑ Jp.10 : Shin-Takatsuo (Kansai Electric Power Company) P 73 㹼 P 78ۑ Jp.11 : Yamasubaru , Saigo (Kyushu Electric Power Company) P 79 㹼 P 86ۑ Jp.12 : Nishiyoshino #1,#2(Electric Power Development Company) P 87 㹼 P 99ۑ Jp.13 : Shin-Nogawa (Yamagata Prefecture) P100 㹼 P108ۑ Jp.14 : Shiroyama (Kanagawa Prefecture) P109 㹼 P114ۑ Jp.15 : Toyomi (Tohoku Electric Power Company) P115 㹼 P123ۑ Jp.16 : Tsuchimurokawa (Tokyo Electric Power Company) P124㹼 P129ۑ Jp.17 : Nishikinugawa (Tokyo Electric Power Company) P130 㹼 P138ۑ Jp.18 : Minakata (Chubu Electric Power Company) P139 㹼 P145ۑ Jp.19 : Himekawa #2 (Chubu Electric Power Company) P146 㹼 P154ۑ Jp.20 : Oguchi (Hokuriku Electric Power Company) P155 㹼 P164ۑ Jp.21 : Doi (Chugoku Electric Power Company)
    [Show full text]
  • Hydrogeology
    Hydrogeology Principles of Groundwater Flow Lecture 3 1 Hydrostatic pressure The total force acting at the bottom of the prism with area A is Dividing both sides by the area, A ,of the prism 1 2 Hydrostatic Pressure Top of the atmosphere Thus a positive suction corresponds to a negative gage pressure. The dimensions of pressure are F/L2, that is Newton per square meter or pascal (Pa), kiloNewton per square meter or kilopascal (kPa) in SI units Point A is in the saturated zone and the gage pressure is positive. Point B is in the unsaturated zone and the gage pressure is negative. This negative pressure is referred to as a suction or tension. 3 Hydraulic Head The law of hydrostatics states that pressure p can be expressed in terms of height of liquid h measured from the water table (assuming that groundwater is at rest or moving horizontally). This height is called the pressure head: For point A the quantity h is positive whereas it is negative for point B. h = Pf /ϒf = Pf /ρg If the medium is saturated, pore pressure, p, can be measured by the pressure head, h = pf /γf in a piezometer, a nonflowing well. The difference between the altitude of the well, H, and the depth to the water inside the well is the total head, h , at the well. i 2 4 Energy in Groundwater • Groundwater possess mechanical energy in the form of kinetic energy, gravitational potential energy and energy of fluid pressure. • Because the amount of energy vary from place-­­to-­­place, groundwater is forced to move from one region to another in order to neutralize the energy differences.
    [Show full text]
  • Generate Your Own Hydropower
    Generate Your Own Hydropower Objectives The student will do the following: 1 Build a water wheel. 2 Build a simple galvanometer. 3. Build a simple hydropower generator 4. Detect the electricity generated 5 Demonstrate how water power is converted to electricity. Subjects: Advanced General Science, Physical Science, Physics Time: 1-2 class periods if working in groups of four; 2-3 class periods if working in groups of two Materials: (for each group) compass, 2 alligator clips (optional), small spool magnetic wire (#28 or finer, insulated), 2 cardboard or masonite rectangles (about 5” x7”), glue, (2) 1-inch nails, (2) 3-inch nails, 1-inch bar magnet, (2) 1- 1/2”x4” metal strips cut from tin can, electrical tape, germanium diode (for example, type1N34A), soldering iron (optional), solder (optional), 3x5” wood block, round tinker toy. (8) 3” tinker toy spokes, 8 small paper cups, student sheets (included) Background Information The model hydropower generator made in this activity works much like hydropower plants for generating electricity. When the propeller (water wheel or turbine) spins, the magnet whizzing past the nail head generates a tiny amount of alternating current (AC) in the coil wound around the nail. The small germanium diode connected across the two nail terminals converts the AC into DC (direct current). The galvanometer will indicate that a small current has been produced by the generator. Procedure I The day before the activity is to be done, introduce it to the class A Define and describe a turbine A turbine is a device that has a central drive shaft fitted with curved vanes or blades that cause it to whirl when force is exerted upon it by water, steam, or gas.
    [Show full text]
  • CPT-Geoenviron-Guide-2Nd-Edition
    Engineering Units Multiples Micro (P) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – Vvo Excess pore pressure: 'u = u2 – u0 Pore pressure ratio: Bq = 'u / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geo-Environmental Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 2nd Edition December 2008 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • Assessing Hydraulic Conditions Through Francis Turbines Using an Autonomous Sensor Device
    Renewable Energy 99 (2016) 1244e1252 Contents lists available at ScienceDirect Renewable Energy journal homepage: www.elsevier.com/locate/renene Assessing hydraulic conditions through Francis turbines using an autonomous sensor device * Tao Fu, Zhiqun Daniel Deng , Joanne P. Duncan, Daqing Zhou, Thomas J. Carlson, Gary E. Johnson, Hongfei Hou Pacific Northwest National Laboratory, Energy & Environment Directorate, Richland, WA 99352, United States article info abstract Article history: Fish can be injured or killed during turbine passage. This paper reports the first in-situ evaluation of Received 6 February 2016 hydraulic conditions that fish experienced during passage through Francis turbines using an autonomous Accepted 9 August 2016 sensor device at Arrowrock, Cougar, and Detroit Dams. Among different turbine passage regions, most of Available online 19 August 2016 the severe events occurred in the stay vane/wicket gate and the runner regions. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, both severe collisions and Keywords: severe shear events occurred. At Cougar Dam, at least 50% fewer releases experienced severe collisions in Francis turbine the runner region operating at peak efficiency than at the minimum and maximum opening, indicating Turbine evaluation Fish-friendly turbine the wicket gate opening could affect hydraulic conditions in the runner region. A higher percentage of Turbine passage releases experienced severe events in the runner region when passing through the Francis turbines than Turbine operations through an advanced hydropower Kaplan turbine (AHT) at Wanapum Dam. The nadir pressures of the three Francis turbines were more than 50% lower than those of the AHT.
    [Show full text]
  • The Impact of Lester Pelton's Water Wheel on the Development Of
    VOLUME XXXVIII, NUMBER 3 SUMMER/FALL 2010 A Publication of the Sierra County Historical Society The Impact of Lester Pelton’s Water Wheel On the Development of California Rivals the 49ers! hile hordes of gold-seeking 49ers At the time, steam engines were being W swarmed into the Sierras in search used to provide power to operate the mines of their fortunes, Lester Pelton, a farmer’s but they were expensive to purchase, not son living in Ohio, came to California in easily transported, and consumed enormous W1850 with ambitions amounts of wood resulting that didn’t include gold in forested hillsides mining. He tried making becoming barren in a very money as a fisherman short time. Water wheels in Sacramento before were being tried by some coming to Camptonville mine owners making use after hearing of the gold of the enormous power strike on the north fork available from water in of the Yuba River. Still the mountain regions but not interested in being they were patterned after a miner, Pelton instead water wheels used to power spent his time observing grain mills in the East and the mining operations in Midwest and were not the Camptonville area capable of producing the and noted that both kinds amount of power needed to of mining, placer and operate hoisting equipment hard rock, required large Lester Pelton, whose invention paved the or stamp mills. amounts of power. He way for low-cost hydro-electric power Having never developed realized that hard rock an interest in mining, mining was more difficult to provide because Pelton spent many years doing carpentry power was needed to operate the hoists to and millwrighting, building many homes, a lower men into the mine shafts, bring up schoolhouse, and stamp mills driven by water loaded ore cars, and return the men to the wheels.
    [Show full text]
  • Design and Analysis of a Kaplan Turbine Runner Wheel
    Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering (MCM'17) Rome, Italy – June 8 – 10, 2017 Paper No. HTFF 151 ISSN: 2369-8136 DOI: 10.11159/htff17.151 Design and Analysis of a Kaplan Turbine Runner Wheel Chamil Abeykoon1, Tobi Hantsch2 1Faculty of Science and Engineering, University of Manchester Oxford Road, M13 9PL, Manchester, UK [email protected] 2Devison of Applied Science, Computing and Engineering, Glyndwr University Mold Road, LL11 2AW, Wrexham, UK Abstract - The demand for renewable energy sources such as hydro, solar and wind has been rapidly growing over the last few decades due to the increasing environmental issues and the predicted scarcity of fossil fuels. Among the renewable energy sources, hydropower generation is one of the primary sources which date back to 1770s. Hydropower turbines are in two types as impulse and reaction where Kaplan turbine is a reaction type which was invented in 1913. The efficiency of a turbine is highly influenced by its runner wheel and this work aims to study the design of a Kaplan turbine runner wheel. First, a theoretical design was performed for determining the main characteristics where it showed an efficiency of 94%. Usually, theoretical equations are generalized and simplified and also they assumed constants of experienced data and hence a theoretical design will only be an approximate. This was confirmed as the same theoretical design showed only 59.98% of efficiency with a computational fluids dynamics (CFD) evaluation. Then, the theoretically proposed design was further analysed where pressure distribution and inlet/outlet tangential velocities of the blades were analysed and corrected with CFD to improve the efficiency of power generation.
    [Show full text]
  • DEPARTMENT of ENGINEERING Course CE 41800 – Hydraulics
    DEPARTMENT OF ENGINEERING Course CE 41800 – Hydraulics Engineering Type of Course Required for Civil Engineering Program Catalog Description Sources and distribution of water in urban environment, including surface reservoir requirements, utilization of groundwater, and distribution systems. Analysis of sewer systems and drainage courses for the disposal of both wastewater and storm water. Pumps and lift stations. Urban planning and storm drainage practice. Credits 3 Contact Hours 3 Prerequisite Courses CE 31800 Corequisite Courses None Prerequisites by Fluid Mechanics Topics Textbook Larry Mays, Water Resources Engineering, John Wiley Publishing Company, Current Edition. Course Objectives Students will understand and be able to apply fundamental concepts and techniques of hydraulics and hydrology in the analysis, design, and operation of water resources systems. Course Outcomes Students who successfully complete this course will be able to: 1. Become familiar with different water resources terminology like hydrology, ground water, hydraulics of pipelines and open channel. [a] 2. Understand and be able to use the energy and momentum equations. [a] 3. Analyze flow in closed pipes, and design and selection of pipes including sizes. [a, c, e] 4. Understand pumps classification and be able to develop a system curve used in pump selection. [a, c, e] 5. Design and select pumps (single or multiple) for different hydraulic applications. [a, c, e] Department Syllabus CE – 41800 Page | 1 6. Become familiar with open channel cross sections, hydrostatic pressure distribution and Manning’s law. [a] 7. Determine water surface profiles for gradually varied flow in open channels. [a, e] 8. Familiar with drainage systems and wastewater sources and flow rates.
    [Show full text]
  • Exploring Design, Technology, and Engineering
    Exploring Design, Technology, & Engineering © 2012 Chapter 21: Energy-Conversion Technology—Terms and Definitions active solar system: a system using moving parts to capture and use solar energy. It can be used to provide hot water and heating for homes. anode: the negative side of a battery. cathode: the positive side of a battery. chemical converter: a technology that converts energy in the molecular structure of substances to another energy form. conductor: a material or object permitting an electric current to flow easily. conservation: making better use of the available supplies of any material. electricity: the movement of electrons through materials called conductors. electromagnetic induction: a physical principle causing a flow of electrons (current) when a wire moves through a magnetic field. energy converter: a device that changes one type of energy into a different energy form. external combustion engine: an engine powered by steam outside of the engine chambers. fluid converter: a device that converts moving fluids, such as air and water, to another form of energy. four-cycle engine: a heat engine having a power stroke every fourth revolution of the crankshaft. fuel cell: an energy converter that converts chemicals directly into electrical energy. gas turbine: a type of engine that creates power from high velocity gases leaving the engine. heat engine: an energy converter that converts energy, such as gasoline, into heat, and then converts the energy from the heat into mechanical energy. internal combustion engine: a heat engine that burns fuel inside its cylinders. jet engine: an engine that obtains oxygen for thrust. mechanical converter: a device that converts kinetic energy to another form of energy.
    [Show full text]
  • Intelligent Hydraulics in New Dimensions. Industrial Hydraulics from Rexroth You Have Our Full Support
    Intelligent Hydraulics in New Dimensions. Industrial Hydraulics from Rexroth You Have Our Full Support. Our Dedication is to Your Success With its extensive product range and outstanding application expertise, Rexroth is the technological and market leader in industrial hydraulics. You benefit from the world’s broadest range of standard products, application-adapted products, and special cus- tomized solutions for industrial hydraulics. Teams operating worldwide engineer and deliver complete turnkey systems. Rexroth is the ideal partner for the development of highly efficient plant and machinery—from the initial contact through to commissioning and for the application’s entire life cycle. Extra quality is ensured by Rexroth’s internal quality standards that go beyond the ISO standards and extends our performance specifications consistently to the upper limits. It is precisely in international large-scale projects and research projects that the company’s financial strength forms a firm foun- dation. All over the world, Rexroth can provide you with skilled advice, support, and exceptional service—with its own distribution and service companies in 80 countries. Hydraulics 3 If You Expect Quality, You’re in Good Hands With Rexroth As the world’s leading supplier of industrial hydraulics, Rexroth occupies a prominent position with its parts, systems and specially adapted electronic components. With Rexroth, builders of machines and plant have access to products that consistently set new standards of perfor- mance and quality. Rexroth’s Industrial Hydraulics division located in Bethlehem, Pennsylvania designs and manufactures high-performance, high-productivity hydraulic power units, systems and com- ponents using world-class technologies. Rexroth supports applications in the machine tool and plastics processing machinery, metal forming, civil engineering, power genera- tion, test machinery and simulation, entertainment, presses, automotive, transportation, marine and offshore technology, and wood processing markets.
    [Show full text]
  • Design of Hydraulic Structures 89, Albertson & Kia (Eds) © 1989 Balkema, Rotterdam
    P AP-SEi5 PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON DESIGN OF HYDRAULIC STRUCTURES / FORT COLLINS, COLORADO / 26-29 JUNE 1989 Design of Hydraulic ructures 89 HYDRAULICS BRANCH St OFFICIAL FILE COPY Edited by MAURICE L.ALBERTSON Department of Civil Engineering, Colorado State University, Fort Collins, USA T RAHIM A.KIA Mahab G. Consulting Eng., Tehran, Iran resently: Department of Civil Engineering, Colorado State University, ort Collins, USA OFFPRINT (3— Bureau of Reclamation HYDRAULICS BRANCH RI WHEN BORROWED RETURN PROMPTLY A.A.BALKEMA / ROTTERDAM / BROOKFIELD / 1989 Design of Hydraulic Structures 89, Albertson & Kia (eds) © 1989 Balkema, Rotterdam. ISBN 90 6191 898 7 The role of hydraulic modeling in development of innovative spillway concepts Philip H.Burgi Bureau of Reclamation, Denver, Colo., USA ABSTRACT: The use of hydraulic models to develop and verify the intricate design of waterways to pass flood flows has been closely associated with the development of hydraulic structures over the past 50 years. Since the mid-30's, the Bureau of Reclamation has used laboratory models to develop spillways for large dams such as Hoover, Grand Coulee, Glen Canyon, Yellowtail, and Morrow Point Dams. Documented reports and generalized design criteria have been developed to summarize the results of these investigations. In recent years, Reclamation has developed various innovative spillway concepts which have resulted in cost effective designs for hydraulic structures. This paper will summarize recent laboratory investigations for labyrinth, stepped, and fuse plug spillway concepts as well as retrofit concepts using aerators on spillways and downstream slope protection systems for overtopping low-head embankments. INTRODUCTION Physical model studies are used to investigate the anticipated performance of hydraulic structures.
    [Show full text]
  • Hydraulic Hints & Trouble Shooting Guide
    Vickers® General Product Support Hydraulic Hints & Trouble Shooting Guide Revised 8/96 694 General Hydraulic Hints . 3 Troubleshooting Guide & Maintenance Hints . 4 Chart 1 Excessive Noise . 5 Chart 2 Excessive Heat . 6 Chart 3 Incorrect Flow . 7 Chart 4 Incorrect Pressure . 8 Chart 5 Faulty Operation . 9 Quiet Hydraulics . 10 Contamination Control . 11 Hints on Maintenance of Hydraulic Fluid in the System. 13 Aeration . 14 Leakage Control . 15 Hydraulic Fluid and Temperature Recommendations for Industrial Machinery. 16 Hydraulic Fluid and Temperature Recommendations for Mobile Hydraulic Systems. 19 Oil Viscosity Recommendations . 20 Pump Test Procedure for Evaluation of Antiwear Fluids for Mobile Systems. 21 Oil Flow Velocity in Tubing . 23 Pipe Sizes and Pressure Ratings . 24 Preparation of Pipes, Tubes and Fittings Before Installation in a Hydraulic System. 25 ISO/ANSI Basic Symbols for Fluid Power Equipment and Systems. 26 Conversion Factors . 29 Hydraulic Formulas . 29 2 General Hydraulic Hints Good Assembly Pipes Tubing Do’s And Don’ts Practices Iron and steel pipes were the first kinds Don’t take heavy cuts on thin wall tubing of plumbing used to conduct fluid with a tubing cutter. Use light cuts to Most important – cleanliness. between system components. At prevent deformation of the tube end. If All openings in the reservoir should be present, pipe is the least expensive way the tube end is out or round, a greater to go when assembling a system. possibility of a poor connection exists. sealed after cleaning. Seamless steel pipe is recommended No grinding or welding operations for use in hydraulic systems with the Ream tubing only for removal of burrs.
    [Show full text]