Exploring Design, Technology, and Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Design, Technology, and Engineering Exploring Design, Technology, & Engineering © 2012 Chapter 21: Energy-Conversion Technology—Terms and Definitions active solar system: a system using moving parts to capture and use solar energy. It can be used to provide hot water and heating for homes. anode: the negative side of a battery. cathode: the positive side of a battery. chemical converter: a technology that converts energy in the molecular structure of substances to another energy form. conductor: a material or object permitting an electric current to flow easily. conservation: making better use of the available supplies of any material. electricity: the movement of electrons through materials called conductors. electromagnetic induction: a physical principle causing a flow of electrons (current) when a wire moves through a magnetic field. energy converter: a device that changes one type of energy into a different energy form. external combustion engine: an engine powered by steam outside of the engine chambers. fluid converter: a device that converts moving fluids, such as air and water, to another form of energy. four-cycle engine: a heat engine having a power stroke every fourth revolution of the crankshaft. fuel cell: an energy converter that converts chemicals directly into electrical energy. gas turbine: a type of engine that creates power from high velocity gases leaving the engine. heat engine: an energy converter that converts energy, such as gasoline, into heat, and then converts the energy from the heat into mechanical energy. internal combustion engine: a heat engine that burns fuel inside its cylinders. jet engine: an engine that obtains oxygen for thrust. mechanical converter: a device that converts kinetic energy to another form of energy. passive solar system: a system that does not use moving parts to capture and use solar energy. rocket engine: a reaction engine based on a principle of physics. Solid fuel and liquid fuel are the two major types of rocket engines. solar cell: a device that converts the energy from sunlight into electric energy. solar converter: a device that converts energy from the Sun to another energy form. step-down transformer: a transformer reducing the voltage of electric current. step-up transformer: a transformer increasing the voltage of electric current. Copyright Goodheart-Willcox Co., Inc. Permission granted to reproduce for educational use only. thermal converter: a device that converts heat energy to another form. transformer: a device that can increase or decrease the voltage (force) of electric current. transmission: the act of moving energy to where it performs work. Trombe wall: an 8″–16″ thick masonry wall with a layer of glass mounted about 1″ in front of the wall. turbine: a device that transforms energy from a flowing stream of fluid into rotating mechanical energy. water turbine: a device that uses the energy of moving water to make electricity. Copyright Goodheart-Willcox Co., Inc. Permission granted to reproduce for educational use only..
Recommended publications
  • Converting an Internal Combustion Engine Vehicle to an Electric Vehicle
    AC 2011-1048: CONVERTING AN INTERNAL COMBUSTION ENGINE VEHICLE TO AN ELECTRIC VEHICLE Ali Eydgahi, Eastern Michigan University Dr. Eydgahi is an Associate Dean of the College of Technology, Coordinator of PhD in Technology program, and Professor of Engineering Technology at the Eastern Michigan University. Since 1986 and prior to joining Eastern Michigan University, he has been with the State University of New York, Oak- land University, Wayne County Community College, Wayne State University, and University of Maryland Eastern Shore. Dr. Eydgahi has received a number of awards including the Dow outstanding Young Fac- ulty Award from American Society for Engineering Education in 1990, the Silver Medal for outstanding contribution from International Conference on Automation in 1995, UNESCO Short-term Fellowship in 1996, and three faculty merit awards from the State University of New York. He is a senior member of IEEE and SME, and a member of ASEE. He is currently serving as Secretary/Treasurer of the ECE Division of ASEE and has served as a regional and chapter chairman of ASEE, SME, and IEEE, as an ASEE Campus Representative, as a Faculty Advisor for National Society of Black Engineers Chapter, as a Counselor for IEEE Student Branch, and as a session chair and a member of scientific and international committees for many international conferences. Dr. Eydgahi has been an active reviewer for a number of IEEE and ASEE and other reputedly international journals and conferences. He has published more than hundred papers in refereed international and national journals and conference proceedings such as ASEE and IEEE. Mr. Edward Lee Long IV, University of Maryland, Eastern Shore Edward Lee Long IV graduated from he University of Maryland Eastern Shore in 2010, with a Bachelors of Science in Engineering.
    [Show full text]
  • Physics 170 - Thermodynamic Lecture 40
    Physics 170 - Thermodynamic Lecture 40 ! The second law of thermodynamic 1 The Second Law of Thermodynamics and Entropy There are several diferent forms of the second law of thermodynamics: ! 1. In a thermal cycle, heat energy cannot be completely transformed into mechanical work. ! 2. It is impossible to construct an operational perpetual-motion machine. ! 3. It’s impossible for any process to have as its sole result the transfer of heat from a cooler to a hotter body ! 4. Heat flows naturally from a hot object to a cold object; heat will not flow spontaneously from a cold object to a hot object. ! ! Heat Engines and Thermal Pumps A heat engine converts heat energy into work. According to the second law of thermodynamics, however, it cannot convert *all* of the heat energy supplied to it into work. Basic heat engine: hot reservoir, cold reservoir, and a machine to convert heat energy into work. Heat Engines and Thermal Pumps 4 Heat Engines and Thermal Pumps This is a simplified diagram of a heat engine, along with its thermal cycle. Heat Engines and Thermal Pumps An important quantity characterizing a heat engine is the net work it does when going through an entire cycle. Heat Engines and Thermal Pumps Heat Engines and Thermal Pumps Thermal efciency of a heat engine: ! ! ! ! ! ! From the first law, it follows: Heat Engines and Thermal Pumps Yet another restatement of the second law of thermodynamics: No cyclic heat engine can convert its heat input completely to work. Heat Engines and Thermal Pumps A thermal pump is the opposite of a heat engine: it transfers heat energy from a cold reservoir to a hot one.
    [Show full text]
  • Internal and External Combustion Engine Classifications: Gasoline
    Internal and External Combustion Engine Classifications: Gasoline and diesel engine classifications: A gasoline (Petrol) engine or spark ignition (SI) burns gasoline, and the fuel is metered into the intake manifold. Spark plug ignites the fuel. A diesel engine or (compression ignition Cl) bums diesel oil, and the fuel is injected right into the engine combustion chamber. When fuel is injected into the cylinder, it self ignites and bums. Preparation of fuel air mixture (gasoline engine): * High calorific value: (Benzene (Gasoline) 40000 kJ/kg, Diesel 45000 kJ/kg). * Air-fuel ratio: A chemically correct air-fuel ratio is called stoichiometric mixture. It is an ideal ratio of around 14.7:1 (14.7 parts of air to 1 part fuel by weight). Under steady-state engine condition, this ratio of air to fuel would assure that all of the fuel will blend with all of the air and be burned completely. A lean fuel mixture containing a lot of air compared to fuel, will give better fuel economy and fewer exhaust emissions (i.e. 17:1). A rich fuel mixture: with a larger percentage of fuel, improves engine power and cold engine starting (i.e. 8:1). However, it will increase emissions and fuel consumption. * Gasoline density = 737.22 kg/m3, air density (at 20o) = 1.2 kg/m3 The ratio 14.7 : 1 by weight equal to 14.7/1.2 : 1/737.22 = 12.25 : 0.0013564 The ratio is 9,030 : 1 by volume (one liter of gasoline needs 9.03 m3 of air to have complete burning).
    [Show full text]
  • Robosuite: a Modular Simulation Framework and Benchmark for Robot Learning
    robosuite: A Modular Simulation Framework and Benchmark for Robot Learning Yuke Zhu Josiah Wong Ajay Mandlekar Roberto Mart´ın-Mart´ın robosuite.ai Abstract robosuite is a simulation framework for robot learning powered by the MuJoCo physics engine. It offers a modular design for creating robotic tasks as well as a suite of benchmark environments for reproducible re- search. This paper discusses the key system modules and the benchmark environments of our new release robosuite v1.0. 1 Introduction We introduce robosuite, a modular simulation framework and benchmark for robot learning. This framework is powered by the MuJoCo physics engine [15], which performs fast physical simulation of contact dynamics. The overarching goal of this framework is to facilitate research and development of data-driven robotic algorithms and techniques. The development of this framework was initiated from the SURREAL project [3] on distributed reinforcement learning for robot manipulation, and is now part of the broader Advancing Robot In- telligence through Simulated Environments (ARISE) Initiative, with the aim of lowering the barriers of entry for cutting-edge research at the intersection of AI and Robotics. Data-driven algorithms [9], such as reinforcement learning [13,7] and imita- tion learning [12], provide a powerful and generic tool in robotics. These learning arXiv:2009.12293v1 [cs.RO] 25 Sep 2020 paradigms, fueled by new advances in deep learning, have achieved some excit- ing successes in a variety of robot control problems. Nonetheless, the challenges of reproducibility and the limited accessibility of robot hardware have impaired research progress [5]. In recent years, advances in physics-based simulations and graphics have led to a series of simulated platforms and toolkits [1, 14,8,2, 16] that have accelerated scientific progress on robotics and embodied AI.
    [Show full text]
  • Toward Multi-Engine Machine Translation Sergei Nirenburg and Robert Frederlcing Center for Machine Translation Carnegie Mellon University Pittsburgh, PA 15213
    Toward Multi-Engine Machine Translation Sergei Nirenburg and Robert Frederlcing Center for Machine Translation Carnegie Mellon University Pittsburgh, PA 15213 ABSTRACT • a knowledge-based MT (K.BMT) system, the mainline Pangloss Current MT systems, whatever translation method they at present engine[l]; employ, do not reach an optimum output on free text. Our hy- • an example-based MT (EBMT) system (see [2, 3]; the original pothesis for the experiment reported in this paper is that if an MT idea is due to Nagao[4]); and environment can use the best results from a variety of MT systems • a lexical transfer system, fortified with morphological analysis working simultaneously on the same text, the overallquality will im- and synthesis modules and relying on a number of databases prove. Using this novel approach to MT in the latest version of the - a machine-readable dictionary (the Collins Spanish/English), Pangloss MT project, we submit an input text to a battery of machine the lexicons used by the KBMT modules, a large set of user- translation systems (engines), coLlect their (possibly, incomplete) re- generated bilingual glossaries as well as a gazetteer and a List sults in a joint chaR-like data structure and select the overall best of proper and organization names. translation using a set of simple heuristics. This paper describes the simple mechanism we use for combining the findings of the various translation engines. The results (target language words and phrases) were recorded in a chart whose initial edges corresponded to words in the source language input. As a result of the operation of each of the MT 1.
    [Show full text]
  • HCM1A0503 Inductor Data Sheet
    Technical Data 10547 Effective August 2016 HCM1A0503 Automotive grade High current power inductors Applications • Body electronics • Central body control module • Vehicle access control system • Headlamps, tail lamps and interior lighting • Heating ventilation and air conditioning controllers (HVAC) • Doors, window lift and seat control • Advanced driver assistance systems • 77 GHz radar system • Basic and smart surround, and rear and front view camera • Adaptive cruise control (ACC) Product features • Automatic parking control • AEC-Q200 Grade 1 qualified • Collision avoidance system/Car black box system • High current carrying capacity • Infotainment and cluster electronics • Magnetically shielded, low EMI • Active noise cancellation (ANC) • Frequency range up to 1 MHz • Audio subsystem: head unit and trunk amp • Inductance range from 0.2 μH to 10 μH • Digital instrument cluster • Current range from 2.3 A to 24 A • In-vehicle infotainment (IVI) and navigation • 5.5 mm x 5.3 mm footprint surface mount package in a 3.0 mm height • Chassis and safety electronics • Alloy powder core material • Airbag control unit • Moisture Sensitivity Level (MSL): 1 • Engine and Powertrain Systems • Halogen free, lead free, RoHS compliant • Powertrain control module (PCU)/Engine Control unit (ECU) • Transmission Control Unit (TCU) Environmental Data • Storage temperature range (Component): -55 °C to +155 °C • Operating temperature range: -55 °C to +155 °C (ambient plus self-temperature rise) • Solder reflow temperature: J-STD-020 (latest revision) compliant
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Horizontal Axis Water Turbine: Generation and Optimization of Green Energy
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 5 (2018) pp. 9-14 © Research India Publications. http://www.ripublication.com Horizontal Axis Water Turbine: Generation and Optimization of Green Energy Disha R. Verma1 and Prof. Santosh D. Katkade2 1Undergraduate Student, 2Assistant Professor, Department of Mechanical Engineering, Sandip Institute of Technology & Research Centre, Nashik, Maharashtra, (India) 1Corresponding author energy requirements. Governments across the world have been Abstract creating awareness about harnessing green energy. The The paper describes the fabrication of a Transverse Horizontal HAWT is a wiser way to harness green energy from the water. Axis Water Turbine (THAWT). THAWT is a variant of The coastal areas like Maldives have also been successfully Darrieus Turbine. Horizontal Axis Water Turbine is a turbine started using more of the energy using such turbines. The HAWT has been proved a boon for such a country which which harnesses electrical energy at the expense of water overwhelmingly depends upon fossil fuels for their kinetic energy. As the name suggests it has a horizontal axis of electrification. This technology has efficiently helped them to rotation. Due to this they can be installed directly inside the curb with various social and economic crisis [2]. The water body, beneath the flow. These turbines do not require complicated remote households and communities of Brazil any head and are also known as zero head or very low head have been electrified with these small hydro-kinetic projects, water turbines. This Project aims at the fabrication of such a where one unit can provide up to 2kW of electric power [11].
    [Show full text]
  • Design, Performance and Maintenance of Francis Turbines
    Global Journal of Researches in Engineering Mechanical and Mechanics Engineering Volume 13 Issue 5 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4596 Print ISSN:0975-5861 Design, Performance and Maintenance of Francis Turbines By Hermod Brekke Abstract - The aim for turbine design is to increase the efficiency and avoid cavitation and fractures during operation. A brief discussion on a the design philosophy during the last 60 years with will be presented. The structural design has moved from castings and riveted plates to fully fabricated structures of high tensile strength steel in the stationary parts and stainless 13/4 Cr/Ni or 16/5 (17/4) Cr/Ni steel have substituted the 13/1 Cr/Ni in runners. The paper also includes an ancient runner design with plate steel blades moulded in cast steel at crown and band. Such high head runners, put in operation in 1950, hve been in operation in good condition Norway until about 15 years ago. A discussion on stress analyses and fatigue problems of pressure loaded parts and high frequency fatigue in runners, will be presented GJRE-A Classification : FOR Code: 290501 Design, Performance and Maintenance ofFrancis Turbines Strictly as per the compliance and regulations of : © 2013. Hermod Brekke. This is a research/review paper, distributed under the terms of the Creative Commons Attribution- Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Airfoil Services
    Airfoil Services Airfoil Services has been jointly owned in equal shares by Lufthansa Technik and MTU Aero Engines since 2003. Part of Lufthansa Technik’s Engine Parts & Accessories Repair (EPAR) network, Airfoil Services specializes in the repair of blades from major aircraft engine manufacturers, including General Electric, CFM International and International Aero Engines. Service spectrum Located in Kota Damansara in Malaysia’s state of Selangor, Airfoil Services merges the leading-edge competencies of both parent companies. Airfoil Services is specializing in the repair of engine airfoils for low-pressure turbines and high-pressure compressors of CF6-50, CF6-80, CF34 engines as well as the CFM56 engine family Ȝ Kuala Lumpur and the V2500. The ultra-modern facility is equipped with state-of-the- art machinery and has installed the most advanced repair techniques such as the Advanced Recontouring Process (ARP), also offering special repair methods such as aluminide bronze coating and high velocity oxygen fuel spraying (HVOF). Organized according to the philosophy of lean production, the repairs follow the flow line principle. Key facts Customers benefit from optimized processes and very competitive turnaround times offered at cost-conscious conditions. At the same Founded 1991 time, the quality of work reflects the high standards of the two German Personnel 420 joint venture partners. Capacity 6,000 m2 In focus: Advanced Recontouring Process (ARP) The Advanced Recontouring Process (ARP) is unique worldwide. Worn compressor blades are first electronically analyzed and then re-contoured in a precision method using robot technology. The restored profile of the engine compressor blades is calculated as a factor of the reduced chord-length of the worn blades so that the best possible aerodynamic profile is obtained.
    [Show full text]
  • Hydropower Team Trip Report (June 18-20, 2003)
    APPENDIX A.3 Hydropower Team Trip Report (June 18-20, 2003) UPPER SAN JOAQUIN RIVER BASIN STORAGE INVESTIGATION - PHASE 1 HYDROPOWER ANALYSIS TRIP REPORT - SITE VISITS TO RETAINED SITES June 18 – 20, 2003 INTRODUCTION This field trip report was prepared to document on-site data collection activities in support of an appraisal-level hydropower evaluation of surface storage options under consideration in the Phase 1 Upper San Joaquin River Basin Storage Investigation. As part of Task 1, Data Collection, field trips were made to three potential Temperance Flat dam locations on the San Joaquin River at river mile (RM) 274, RM 279, RM 286; and at two potential dam sites for off-steam storage reservoirs at Fine Gold Creek and Yokohl Creek. Field trips were also made to the Pacific Gas and Electric (PG&E) and Southern California Edison (SCE) hydroelectric facilities likely to be impacted by dams at RM 274, RM 279 and RM 286. The PG&E facilities included Wishon Powerhouse, Kerckhoff Dam, Kerckhoff No: 1 Powerhouse and Kerckhoff No: 2 Powerhouse. The SCE facilities included Big Creek No: 4 Powerhouse, Redinger Dam and Big Creek No: 3 Powerhouse. The PG&E and SCE facilities are all located on the San Joaquin River. Potential dam locations and existing PG&E and SCE facilities were visited as follows: Wednesday, June 18, 2003: RM 286, Big Creek No: 4 Powerhouse, Redinger Dam, Big Creek No: 3 Powerhouse, and Fine Gold Creek. Thursday, June 19, 2003: Kerckhoff Dam, Wishon Powerhouse, Kerckhoff No: 1 Powerhouse, Kerckhoff No: 2 Powerhouse, and Yokohl Creek.
    [Show full text]
  • United States Environmental Protection Agency Engine Declaration Form: Importation of Engines, Vehicles, and Equipment Subject T
    Form Approved OMB 2060-0717 Approval Expires June 30, 2023 United States Environmental Protection Agency Engine Declaration Form &EPA Importation of Engines, Vehicles, and Equipment Subject to Federal Air Pollution Regulations U.S. EPA, Compliance Division, 2000 Traverwood Dr., Ann Arbor, Michigan 48105. (734) 214-4100; [email protected]; www.epa.gov/otaq/imports/ This form must be submitted to the U.S. Customs and Border Protection (Customs) by the importer for each imported stationary, nonroad or heavy- duty highway engine, including engines incorporated into vehicles or equipment, but not for new products covered by an EPA certificate of conformity, bearing an EPA emission control label, if the original manufacturer is the importer. Note that references in this form to engines generally include vehicles or equipment if they are subject to equipment-based standards. One form per engine or group of engines in a shipment may be used, with attachments including all information required to fully describe each engine as below. This form must be retained for five years from the date of entry (19 CFR 163.4). Additional requirements may apply in California. NOTE: While certain imports require specific written authorization from EPA, CBP may request EPA review of importer documentation and eligibility for any import using this form. For light-duty motor vehicles, highway motorcycles, and the correspond- ing engines, use form 3520-1. This form does not apply to aircraft engines. Identify the type of highway, nonroad, or stationary engine, vehicle, or equipment you are importing from the following list of products: o A. Heavy-duty highway engines (for use in motor vehicles with gross vehicle weight rating above 8500 pounds).
    [Show full text]