Optical Phase Measurement Emphasized
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polarization of Light: Malus' Law, the Fresnel Equations, and Optical Activity
Polarization of light: Malus' law, the Fresnel equations, and optical activity. PHYS 3330: Experiments in Optics Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 (Dated: Revised August 2012) In this lab you will (1) test Malus' law for the transmission of light through crossed polarizers; (2) test the Fresnel equations describing the reflection of polarized light from optical interfaces, and (3) using polarimetry to determine the unknown concentration of a sucrose and water solution. I. POLARIZATION III. PROCEDURE You will need to complete some background reading 1. Position the fixed \V" polarizer after mirror \M" before your first meeting for this lab. Please carefully to establish a vertical polarization axis for the laser study the following sections of the \Newport Projects in light. Optics" document (found in the \Reference Materials" 2. Carefully adjust the position of the photodiode so section of the course website): 0.5 \Polarization" Also the laser beam falls entirely within the central dark read chapter 6 of your text \Physics of Light and Optics," square. by Peatross and Ware. Your pre-lab quiz cover concepts presented in these materials AND in the body of this 3. Plug the photodiode into the bench top voltmeter write-up. Don't worry about memorizing equations { the and observe the voltage { it should be below 200 quiz should be elementary IF you read these materials mV; if not, you may need to attenuate the light by carefully. Please note that \taking a quick look at" these [anticipating the validity off Malus' law!] inserting materials 5 minutes before lab begins will likely NOT be the polarizer on a rotatable arm \R" upstream of adequate to do well on the quiz. -
Lab 8: Polarization of Light
Lab 8: Polarization of Light 1 Introduction Refer to Appendix D for photos of the appara- tus Polarization is a fundamental property of light and a very important concept of physical optics. Not all sources of light are polarized; for instance, light from an ordinary light bulb is not polarized. In addition to unpolarized light, there is partially polarized light and totally polarized light. Light from a rainbow, reflected sunlight, and coherent laser light are examples of po- larized light. There are three di®erent types of po- larization states: linear, circular and elliptical. Each of these commonly encountered states is characterized Figure 1: (a)Oscillation of E vector, (b)An electromagnetic by a di®ering motion of the electric ¯eld vector with ¯eld. respect to the direction of propagation of the light wave. It is useful to be able to di®erentiate between 2 Background the di®erent types of polarization. Some common de- vices for measuring polarization are linear polarizers and retarders. Polaroid sunglasses are examples of po- Light is a transverse electromagnetic wave. Its prop- larizers. They block certain radiations such as glare agation can therefore be explained by recalling the from reflected sunlight. Polarizers are useful in ob- properties of transverse waves. Picture a transverse taining and analyzing linear polarization. Retarders wave as traced by a point that oscillates sinusoidally (also called wave plates) can alter the type of polar- in a plane, such that the direction of oscillation is ization and/or rotate its direction. They are used in perpendicular to the direction of propagation of the controlling and analyzing polarization states. -
Fresnel Rhombs As Achromatic Phase Shifters for Infrared Nulling Interferometry: First Experimental Results
Fresnel Rhombs as Achromatic Phase Shifters for Infrared Nulling Interferometry: First experimental results Hanot c.a, Mawet D.a, Loicq J.b, Vandormael D.b, Plesseria J.Y.b, Surdej J.a, Habraken s.a,b alnstitut d'Astrophysique et de Geophysique, University of Liege, 17 allee du 6 Aout, B-4000, Sart Tilman, Belgium; bCentre Spatial de Liege, Avenue du Pre-Aily, B-4031, Liege-Angleur, Belgium ABSTRACT One of the most critical units of nulling interferometers is the Achromatic Phase Shifter. The concept we propose here is based on optimized Fresnel rhombs, using the total internal reflection phenomenon, modulated or not. The total internal reflection induces a phase shift between the polarization components of the incident light. We present the principles, the current status of the prototype manufacturing and testing operations, as well as preliminary experiments on a ZnSe Fresnel rhomb in the visible that have led to a first error source assessment study. Thanks to these first experimental results using a simple polarimeter arrangement, we have identified the bulk scattering as being the main error source. Fortunately, we have experimentally verified that the scattering can be mitigated using spatial filters and does not decrease the phase shifting capabilities of the ZnSe Fresnel rhomb. Keywords: Fresnel Rhomb, Achromatic Phase Shifters, nulling interferometry, subwavelength gratings, Zinc Selenide, bulk scattering 1. INTRODUCTION The detection of extrasolar planets and later on the presence of life on them is one of the most interesting and ambitious astrophysical projects for the next decades. Up to now, despite our technological progresses, most exoplanets have been detected using indirect methods. -
Observation of Elliptically Polarized Light from Total Internal Reflection in Bubbles
Observation of elliptically polarized light from total internal reflection in bubbles Item Type Article Authors Miller, Sawyer; Ding, Yitian; Jiang, Linan; Tu, Xingzhou; Pau, Stanley Citation Miller, S., Ding, Y., Jiang, L. et al. Observation of elliptically polarized light from total internal reflection in bubbles. Sci Rep 10, 8725 (2020). https://doi.org/10.1038/s41598-020-65410-5 DOI 10.1038/s41598-020-65410-5 Publisher NATURE PUBLISHING GROUP Journal SCIENTIFIC REPORTS Rights Copyright © The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License. Download date 29/09/2021 02:08:57 Item License https://creativecommons.org/licenses/by/4.0/ Version Final published version Link to Item http://hdl.handle.net/10150/641865 www.nature.com/scientificreports OPEN Observation of elliptically polarized light from total internal refection in bubbles Sawyer Miller1,2 ✉ , Yitian Ding1,2, Linan Jiang1, Xingzhou Tu1 & Stanley Pau1 ✉ Bubbles are ubiquitous in the natural environment, where diferent substances and phases of the same substance forms globules due to diferences in pressure and surface tension. Total internal refection occurs at the interface of a bubble, where light travels from the higher refractive index material outside a bubble to the lower index material inside a bubble at appropriate angles of incidence, which can lead to a phase shift in the refected light. Linearly polarized skylight can be converted to elliptically polarized light with efciency up to 53% by single scattering from the water-air interface. Total internal refection from air bubble in water is one of the few sources of elliptical polarization in the natural world. -
Ellipsometry
AALBORG UNIVERSITY Institute of Physics and Nanotechnology Pontoppidanstræde 103 - 9220 Aalborg Øst - Telephone 96 35 92 15 TITLE: Ellipsometry SYNOPSIS: This project concerns measurement of the re- fractive index of various materials and mea- PROJECT PERIOD: surement of the thickness of thin films on sili- September 1st - December 21st 2004 con substrates by use of ellipsometry. The el- lipsometer used in the experiments is the SE 850 photometric rotating analyzer ellipsome- ter from Sentech. THEME: After an introduction to ellipsometry and a Detection of Nanostructures problem description, the subjects of polar- ization and essential ellipsometry theory are covered. PROJECT GROUP: The index of refraction for silicon, alu- 116 minum, copper and silver are modelled us- ing the Drude-Lorentz harmonic oscillator model and afterwards measured by ellipsom- etry. The results based on the measurements GROUP MEMBERS: show a tendency towards, but are not ade- Jesper Jung quately close to, the table values. The mate- Jakob Bork rials are therefore modelled with a thin layer of oxide, and the refractive indexes are com- Tobias Holmgaard puted. This model yields good results for the Niels Anker Kortbek refractive index of silicon and copper. For aluminum the result is improved whereas the result for silver is not. SUPERVISOR: The thickness of a thin film of SiO2 on a sub- strate of silicon is measured by use of ellip- Kjeld Pedersen sometry. The result is 22.9 nm which deviates from the provided information by 6.5 %. The thickness of two thick (multiple wave- NUMBERS PRINTED: 7 lengths) thin polymer films are measured. The polymer films have been spin coated on REPORT PAGE NUMBER: 70 substrates of silicon and the uniformities of the surfaces are investigated. -
Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam
Physics 42200 Waves & Oscillations Lecture 26 – Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam Almost all grades have been uploaded to http://chip.physics.purdue.edu/public/422/spring2013/ These grades have not been adjusted Exam questions and solutions are available on the Physics 42200 web page . Outline for the rest of the course • Polarization • Geometric Optics • Interference • Diffraction • Review Polarization by Partial Reflection • Continuity conditions for Maxwell’s Equations at the boundary between two materials • Different conditions for the components of or parallel or perpendicular to the surface. Polarization by Partial Reflection • Continuity of electric and magnetic fields were different depending on their orientation: – Perpendicular to surface = = – Parallel to surface = = perpendicular to − cos + cos − cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" perpendicular to cos − cos cos = cos + cos cos = • Solve for /: − = !" + !" • Solve for /: !" = !" + !" Fresnel’s Equations • In most dielectric media, = and therefore # sin = = = = # sin • After some trigonometry… sin − tan − = − = sin + tan + ) , /, /01 2 ) 45/ 2 /01 2 * = - . + * = + * )+ /01 2+32* )+ /01 2+32* 45/ 2+62* For perpendicular and parallel to plane of incidence. Application of Fresnel’s Equations • Unpolarized light in air ( # = 1) is incident -
Understanding Polarization
Semrock Technical Note Series: Understanding Polarization The Standard in Optical Filters for Biotech & Analytical Instrumentation Understanding Polarization 1. Introduction Polarization is a fundamental property of light. While many optical applications are based on systems that are “blind” to polarization, a very large number are not. Some applications rely directly on polarization as a key measurement variable, such as those based on how much an object depolarizes or rotates a polarized probe beam. For other applications, variations due to polarization are a source of noise, and thus throughout the system light must maintain a fixed state of polarization – or remain completely depolarized – to eliminate these variations. And for applications based on interference of non-parallel light beams, polarization greatly impacts contrast. As a result, for a large number of applications control of polarization is just as critical as control of ray propagation, diffraction, or the spectrum of the light. Yet despite its importance, polarization is often considered a more esoteric property of light that is not so well understood. In this article our aim is to answer some basic questions about the polarization of light, including: what polarization is and how it is described, how it is controlled by optical components, and when it matters in optical systems. 2. A description of the polarization of light To understand the polarization of light, we must first recognize that light can be described as a classical wave. The most basic parameters that describe any wave are the amplitude and the wavelength. For example, the amplitude of a wave represents the longitudinal displacement of air molecules for a sound wave traveling through the air, or the transverse displacement of a string or water molecules for a wave on a guitar string or on the surface of a pond, respectively. -
The Fresnel Equations and Brewster's Law
The Fresnel Equations and Brewster's Law Equipment Optical bench pivot, two 1 meter optical benches, green laser at 543.5 nm, 2 10cm diameter polarizers, rectangular polarizer, LX-02 photo-detector in optical mount, thick acrylic block, thick glass block, Phillips multimeter, laser mount, sunglasses. Purpose To investigate polarization by reflection. To understand and verify the Fresnel equations. To explore Brewster’s Law and find Brewster’s angle experimentally. To use Brewster’s law to find Brewster’s angle. To gain experience working with optical equipment. Theory Light is an electromagnetic wave, of which fundamental characteristics can be described in terms of the electric field intensity. For light traveling along the z-axis, this can be written as r r i(kz−ωt) E = E0e (1) r where E0 is a constant complex vector, and k and ω are the wave number and frequency respectively, with k = 2π / λ , (2) λ being the wavelength. The purpose of this lab is to explore the properties the electric field in (1) at the interface between two media with indices of refraction ni and nt . In general, there will be an incident, reflected and transmitted wave (figure 1), which in certain cases reduce to incident and reflected or incident and transmitted only. Recall that the angles of the transmitted and reflected beams are described by the law of reflection and Snell’s law. This however tells us nothing about the amplitudes of the reflected and transmitted Figure 1 electric fields. These latter properties are defined by the Fresnel equations, which we review below. -
A Sensitive Spectropolarimeter for the Measurement
A SENSITIVE SPECTROPOLARIMETER FOR THE MEASUREMENT OF CIRCULAR POLARIZATION OF LUMINESCENCE A Thesis Presented to The Faculty of the College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirements for the Degree Master of Science By Ziad I. AI-Akir, June, 1990 DlHtft7~~·"E:RsaTY LI~~RY ACKNOWLEDGEMENT With gratitude and constancy, I praise the Almighty Allah for the grace and favors that He bestowed on me. Without His guidance and blessing, I would not be able to achieve any good deed in this life. I wish to extend my genuine appreciation to my advisor Dr. Henryk Lozykowski, for his teachings, assistance, encouragement and helpful suggestions. A special appreciation goes to Mr. V. K. Shastri and Mr. T. Lee for their assistance and valuable help during the preparation of this thesis. Finally, I would like to thank my brothers: Mohammed EI-Gamal, Amer AI-shawa, Abdulbaset AI-Abadleh and Rabah Odeh for their encouragement and all the brothers who helped me without knowing it. DEDICATION This thesis is dedicated to my family in Palestine and Kuwait, who have been a great source of blessing, motivation and encouragement. CONTENTS CHAPTER ONE Introduction 1 1.1 Circular Polarization of Luminescence 2 1.2 SPC in Luminescence Measurements 3 1.3 Objectives........... 5 CHAPTER TWO Literature Review......... 8 2.1 The Nature ofLight 8 2.2 Light in Matter 12 2.3 Semiconductor Materials 13 2.3.1 Intrinsic and Extrinsic Semiconductors. 15 2.3.2 Direct and Indirect Semiconductors ............... 16 2.4 Photoluminescence in Semiconductors...................... 18 2.5 Polarization 22 2.5.1 Linear Polarization 22 2.5.2 Circular Polarization 24 2.5.3 Elliptical Polarization.................................. -
Polarized Light 1
EE485 Introduction to Photonics Polarized Light 1. Matrix treatment of polarization 2. Reflection and refraction at dielectric interfaces (Fresnel equations) 3. Polarization phenomena and devices Reading: Pedrotti3, Chapter 14, Sec. 15.1-15.2, 15.4-15.6, 17.5, 23.1-23.5 Polarization of Light Polarization: Time trajectory of the end point of the electric field direction. Assume the light ray travels in +z-direction. At a particular instance, Ex ˆˆEExy y ikz() t x EEexx 0 ikz() ty EEeyy 0 iixxikz() t Ex[]ˆˆEe00xy y Ee e ikz() t E0e Lih Y. Lin 2 One Application: Creating 3-D Images Code left- and right-eye paths with orthogonal polarizations. K. Iizuka, “Welcome to the wonderful world of 3D,” OSA Optics and Photonics News, p. 41-47, Oct. 2006. Lih Y. Lin 3 Matrix Representation ― Jones Vectors Eeix E0x 0x E0 E iy 0 y Ee0 y Linearly polarized light y y 0 1 x E0 x E0 1 0 Ẽ and Ẽ must be in phase. y 0x 0y x cos E0 sin (Note: Jones vectors are normalized.) Lih Y. Lin 4 Jones Vector ― Circular Polarization Left circular polarization y x EEe it EA cos t At z = 0, compare xx0 with x it() EAsin tA ( cos( t / 2)) EEeyy 0 y 1 1 yxxy /2, 0, E00 EA Jones vector = 2 i y Right circular polarization 1 1 x Jones vector = 2 i Lih Y. Lin 5 Jones Vector ― Elliptical Polarization Special cases: Counter-clockwise rotation 1 A Jones vector = AB22 iB Clockwise rotation 1 A Jones vector = AB22 iB General case: Eeix A 0x A B22C E0 i y bei B iC Ee0 y Jones vector = 1 A A ABC222 B iC 2cosEE00xy tan 2 22 EE00xy Lih Y. -
Exam: Optics and Optical Design
Dept of Physics LTH Exam: Optics and Optical design Instructions: The five problems are not ordered by increasing difficulty. For each problem a maximum of six points will be given. Fifteen points are required for passing the exam. Observe that solutions without reasonable motivation are not acceptable, even if the final answer is correct. You are allowed to bring: For the first problem: no help For the other: Calculator, TEFYMA, the course book. 1. a) Explain the differences between homogeneous, isotropic, and dispersive media. b) Large beam splitters in the shape of windows are used in supermarkets to supervise the customers or by the police in interrogation rooms. Explain why the clerk in the shop behind the window can see you, but you cannot see him/her. (Tip: It has nothing to with polarization. In principle, any window can do, if the lighting is chosen correctly.) a) b) Figure 1. a) Imaging with a thick lens. b) Equivalent ray diagram. 2. A thick convex-plane lens with a radius R and refractive index n is surrounded by air according to figure 1a. a) Determine the ray-transfer matrix of the system between the first surface and the focal plane. b) Give a formula for the distance d2 as a function of R n and d. The thick lens can be replaced with a plane (principal plane) where all the refractions occur (figure 1b). Then the focal point F is located at the distance f from this plane. c) Show that the distance f of the lens is given by the formula: R f n 1 d) Show that this is the focal length of the lens when it can be assumed to be a thin lens. -
Optical Modeling of Nanostructures
Optical modeling of nanostructures Phd Part A Report Emil Haldrup Eriksen 20103129 Supervisor: Peter Balling, Søren Peder Madsen January 2017 Department of Physics and Astronomy Aarhus University Contents 1 Introduction 3 2 Maxwell’s Equations 5 2.1 Macroscopic form ................................. 5 2.2 The wave equation ................................ 6 2.3 Assumptions .................................... 7 2.4 Boundary conditions ............................... 7 2.5 Polarization conventions ............................. 7 3 Transfer Matrix Method(s) 9 3.1 Fresnel equations ................................. 9 3.2 The transfer matrix method ........................... 9 3.3 Incoherence .................................... 11 3.4 Implementation .................................. 14 4 The Finite Element Method 15 4.1 Basic principle(s) ................................. 15 4.2 Scattered field formulation ............................ 17 4.3 Boundary conditions ............................... 17 4.4 Probes ....................................... 19 4.5 Implementation .................................. 19 5 Results 20 5.1 Nanowrinkles ................................... 20 5.2 The two particle model .............................. 24 6 Conclusion 28 6.1 Outlook ....................................... 28 Bibliography 29 Front page illustration: Calculated field enhancement near a gold nanostar fabricated by EBL. The model geometry was constructed in 2D from a top view SEM image using edge detection and extruded to 3D. 1 Introduction Solar