Rational Real Algebraic Models of Topological Surfaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to Topology the Classification Theorem for Surfaces by E
An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5. -
Recognizing Surfaces
RECOGNIZING SURFACES Ivo Nikolov and Alexandru I. Suciu Mathematics Department College of Arts and Sciences Northeastern University Abstract The subject of this poster is the interplay between the topology and the combinatorics of surfaces. The main problem of Topology is to classify spaces up to continuous deformations, known as homeomorphisms. Under certain conditions, topological invariants that capture qualitative and quantitative properties of spaces lead to the enumeration of homeomorphism types. Surfaces are some of the simplest, yet most interesting topological objects. The poster focuses on the main topological invariants of two-dimensional manifolds—orientability, number of boundary components, genus, and Euler characteristic—and how these invariants solve the classification problem for compact surfaces. The poster introduces a Java applet that was written in Fall, 1998 as a class project for a Topology I course. It implements an algorithm that determines the homeomorphism type of a closed surface from a combinatorial description as a polygon with edges identified in pairs. The input for the applet is a string of integers, encoding the edge identifications. The output of the applet consists of three topological invariants that completely classify the resulting surface. Topology of Surfaces Topology is the abstraction of certain geometrical ideas, such as continuity and closeness. Roughly speaking, topol- ogy is the exploration of manifolds, and of the properties that remain invariant under continuous, invertible transforma- tions, known as homeomorphisms. The basic problem is to classify manifolds according to homeomorphism type. In higher dimensions, this is an impossible task, but, in low di- mensions, it can be done. Surfaces are some of the simplest, yet most interesting topological objects. -
The Real Projective Spaces in Homotopy Type Theory
The real projective spaces in homotopy type theory Ulrik Buchholtz Egbert Rijke Technische Universität Darmstadt Carnegie Mellon University Email: [email protected] Email: [email protected] Abstract—Homotopy type theory is a version of Martin- topology and homotopy theory developed in homotopy Löf type theory taking advantage of its homotopical models. type theory (homotopy groups, including the fundamen- In particular, we can use and construct objects of homotopy tal group of the circle, the Hopf fibration, the Freuden- theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key thal suspension theorem and the van Kampen theorem, players in homotopy theory, as certain higher inductive types for example). Here we give an elementary construction in homotopy type theory. The classical definition of RPn, in homotopy type theory of the real projective spaces as the quotient space identifying antipodal points of the RPn and we develop some of their basic properties. n-sphere, does not translate directly to homotopy type theory. R n In classical homotopy theory the real projective space Instead, we define P by induction on n simultaneously n with its tautological bundle of 2-element sets. As the base RP is either defined as the space of lines through the + case, we take RP−1 to be the empty type. In the inductive origin in Rn 1 or as the quotient by the antipodal action step, we take RPn+1 to be the mapping cone of the projection of the 2-element group on the sphere Sn [4]. -
The Seifert-Van Kampen Theorem, and the Classification of Surfaces
1 SMSTC Geometry and Topology 2012{2013 Lecture 9 The Seifert { van Kampen Theorem The classification of surfaces Andrew Ranicki (Edinburgh) Drawings by Carmen Rovi (Edinburgh) 6th December, 2012 2 Introduction I Topology and groups are closely related via the fundamental group construction π1 : fspacesg ! fgroupsg ; X 7! π1(X ) : I The Seifert - van Kampen Theorem expresses the fundamental group of a union X = X1 [Y X2 of path-connected spaces in terms of the fundamental groups of X1; X2; Y . I The Theorem is used to compute the fundamental group of a space built up using spaces whose fundamental groups are known already. I The Theorem is used to prove that every group G is the fundamental group G = π1(X ) of a space X , and to compute the fundamental groups of surfaces. I Treatment of Seifert-van Kampen will follow Section I.1.2 of Hatcher's Algebraic Topology, but not slavishly so. 3 Three ways of computing the fundamental group I. By geometry I For an infinite space X there are far too many loops 1 ! : S ! X in order to compute π1(X ) from the definition. I A space X is simply-connected if X is path connected and the fundamental group is trivial π1(X ) = feg : I Sometimes it is possible to prove that X is simply-connected by geometry. I Example: If X is contractible then X is simply-connected. n I Example: If X = S and n > 2 then X is simply-connected. I Example: Suppose that (X ; d) is a metric space such that for any x; y 2 X there is unique geodesic (= shortest path) αx;y : I ! X from αx;y (0) = x to αx;y (1) = y. -
Embedding the Petersen Graph on the Cross Cap
Embedding the Petersen Graph on the Cross Cap Julius Plenz Martin Zänker April 8, 2014 Introduction In this project we will introduce the Petersen graph and highlight some of its interesting properties, explain the construction of the cross cap and proceed to show how to embed the Petersen graph onto the suface of the cross cap without any edge intersection – an embedding that is not possible to achieve in the plane. 3 Since the self-intersection of the cross cap in R is very hard to grasp in a planar setting, we will subsequently create an animation using the 3D modeling software Maya that visualizes the important aspects of this construction. In particular, this visualization makes possible to develop an intuition of the object at hand. 1 Theoretical Preliminaries We will first explore the construction of the Petersen graph and the cross cap, highlighting interesting properties. We will then proceed to motivate the embedding of the Petersen graph on the surface of the cross cap. 1.1 The Petersen Graph The Petersen graph is an important example from graph theory that has proven to be useful in particular as a counterexample. It is most easily described as the special case of the Kneser graph: Definition 1 (Kneser graph). The Kneser graph of n, k (denoted KGn;k) consists of the k-element subsets of f1; : : : ;ng as vertices, where an edge connects two vertices if and only if the two sets corre- sponding to the vertices are disjoint. n−k n−k The graph KGn;k is k -regular, i. -
Real Compact Surfaces
GENERAL I ARTICLE Real Compact Surfaces A lexandru Oancea Alexandru Oancea studies The classification of real compact surfaces is a main result in ENS, Paris and is which is at the same time easy to understand and non currently pursuing his trivial, simple in formulation and rich in consequences. doctoral work at Univ. The aim of this article is to explain the theorem by means Paris Sud, Orsay, France. He visited the Chennai of many drawings. It is an invitation to a visual approach of Mathematical Institute, mathematics. Chennai in 2000 as part of ENS-CMI exchange First Definitions and Examples programme. We assume that the reader has already encountered the notion of a topology on a set X. Roughly speaking this enables one to recognize points that are 'close' to a given point x E X. Continuous fu'nctions between topological spaces are functions that send 'close' points to 'close' points. We can also see this on their graph: • The graph of a continuous function f: R-7R can be drawn without raising the pencil from the drawing paper. • The graph of a continuous function!: R 2 -7 R can be thought of as a tablecloth which is not tom. • The graph of a continuous map between topological spaces f' X -7 Y is closed in the product space. X x Y. The most familiar topological space is the n-dimensional euclid ean space Rn. It will be the hidden star of the present article, which is devoted to a rich generalization of this kind of space, namely manifolds. -
More Topology
More topology Here are all the cases of χ = 2 − 2h − w − c ≥ 0 : h w c χ sphere 0 0 0 2 disk 0 1 0 1 projective plane 0 0 1 1 torus 1 0 0 0 cylinder 0 2 0 0 M¨obiusstrip 0 1 1 0 Klein bottle 0 0 2 0 The ones with c 6= 0 are a little hard to picture, and especially to understand why they correspond to insertions of crosscaps, but we can give a simple construction from the disk: Represent the disk as a square; we then consider identifying opposite sides, either with or without a twist. First, identify just the left and right sides; the result is: cylinder no twist disk ! M¨obiusstrip twist For the cylinder, the top edge has its ends identified, and so does the bottom, giving 2 boundaries; for the M¨obiusstrip, the ends of the top edge have been identified with those of the bottom, leaving 1 boundary. The cylinder is easy to picture, and this definition of the M¨obiusstrip is the usual one. The cylinder is also clearly a sphere with 2 windows. The M¨obiusstrip has 1 boundary that can be identified with a window, but the crosscap is more subtle: Consider horizontal lines in the disk; because of the twisted identification, they are closed, with half in the top half of the disk, connected to the other half in the bottom half of the disk. Now move continuously from line to line, from the boundary (top and bottom edges) to the middle. -
Projective Geometry at Chalmers in the Fall of 1989
Table of Contents Introduction ........................ 1 The Projective Plane ........................ 1 The Topology of RP 2 ........................ 3 Projective Spaces in General ........................ 4 The Riemannsphere and Complex Projective Spaces ........................ 4 Axiomatics and Finite Geometries ........................ 6 Duality and Conics ........................ 7 Exercises 1-34 ........................ 10 Crossratio ........................ 15 The -invariant ........................ 16 Harmonic Division ........................ 17 Involutions ........................ 17 Exercises 35-56 ........................ 19 Non-Singular Quadrics ........................ 22 Involutions and Non-Singular Quadrics ........................ 26 Exercises 57-76 ........................ 28 Ellipses,Hyperbolas,Parabolas and circular points at ........................ 31 The Space of Conics ∞ ........................ 32 Exercises 77-105 ........................ 37 Pencils of Conics ........................ 40 Exercises 106-134 ........................ 43 Quadric Surfaces ........................ 46 Quadrics as Double Coverings ........................ 49 Hyperplane sections and M¨obius Transformations ........................ 50 Line Correspondences ........................ 50 Conic Correspondences ........................ 51 Exercises 135-165 ........................ 53 Birational Geometry of Quadric Surfaces ........................ 56 Blowing Ups and Down ........................ 57 Cremona Transformations ....................... -
Manifolds Which Are Like Projective Planes
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. JAMES EELLS NICOLAAS H. KUIPER Manifolds which are like projective planes Publications mathématiques de l’I.H.É.S., tome 14 (1962), p. 5-46 <http://www.numdam.org/item?id=PMIHES_1962__14__5_0> © Publications mathématiques de l’I.H.É.S., 1962, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ MANIFOLDS WHICH ARE LIKE PROJECTIVE PLANES by JAMES EELLS, Jr. (1) and NICOLAAS H. KUIPER (2) INTRODUCTION This paper presents a development of the results we announced in [6]. We deal with the following question, which we state here in rather broad terms: Given a closed n'dimensional manifold X such that there exists a nondegenerate real valued function f: X->R with precisely three critical points. In what way does the existence of f restrict X ? The problem will be considered from the topological, combinatorial, and differentiable point of view. The corresponding question for a function with two critical points (which is the minimum number except in trivial cases) has been studied by Reeb [25], and Kuiper [17]. In that case X is homeomorphic to an ^-sphere, and Milnor [19] used this fact in his discovery of inequivalent differentiable structures on the 7-sphere. -
CLASSIFICATION of SURFACES Contents 1. Introduction 1 2. Torus
CLASSIFICATION OF SURFACES YUJIE ZHANG Abstract. The sphere, M¨obiusstrip, torus, real projective plane and Klein bottle are all important ex- amples of surfaces (topological 2-manifolds). In fact, via the connected sum operation, all surfaces can be constructed out of these. After introducing these topological spaces, we define and study important prop- erties and invariants of surfaces, such as orientability, Euler characteristic, and genus. Last, we give a proof of the classification theorem for surfaces, which states that all compact surfaces are homeomorphic to the sphere, the connected sum of tori, or the connected sum of projective planes. Contents 1. Introduction 1 2. Torus, projective plane and Klein bottle 1 2.1. First definitions 2 2.2. Basic surfaces 2 3. Orientability, Genus and Euler characteristic 4 3.1. Computations 5 3.2. Connected Sum 5 4. The Classification Theorem 7 Acknowledgments 10 References 10 1. Introduction The main goal of this paper is to develop a geometric intuition for topological subjects. The structure of the paper is as follows. In x2, we make some basic definitions and describe the construction of basic surfaces such as the sphere, torus, real1 projective plane, and Klein bottle. In x3, we define some fundamental invariants of surfaces: orientability, genus, and Euler characteristic. Our definitions, in keeping with an intuitionistic spirit and a geometric preference, will occasionally be less- than-entirely rigorous, but we hope they will capture the imagination of the reader for whom this account may provide a first introduction. In x4, we proceed to the proof of the classification theorem for surfaces. -
Viewing the Real Projective Plane in R3 ; the Cross-Cap and the Steiner
Appendix A Viewing the Real Projective Plane in R3;The Cross-Cap and the Steiner Roman Surface It turns out that there are several ways of viewing the real projective plane in R3 as a surface with self-intersection. Recall that, as a topological space, the projective plane, RP2, is the quotient of the 2-sphere, S 2,(inR3) by the equivalence relation that identifies antipodal points. In Hilbert and Cohn–Vossen [2](andalsodoCarmo [1]) an interesting map, H , from R3 to R4 is defined by .x; y; z/ 7! .xy; yz;xz;x2 y2/: This map has the remarkable property that when restricted to S 2,wehave H .x; y; z/ D H .x0;y0; z0/ iff .x0;y0; z0/ D .x; y; z/ or .x0;y0; z0/ D .x;y; z/. In other words, the inverse image of every point in H .S 2/ consists of two antipodal points. Thus, the map H induces an injective map from the projective plane onto H .S 2/, which is obviously continuous, and since the projective plane is compact, it is a homeomorphism. Therefore, the map H allows us to realize concretely the projective plane in R4 by choosing any parametrization of the sphere, S 2,and applying the map H to it. Actually, it turns out to be more convenient to use the map A defined such that .x; y; z/ 7! .2xy; 2yz;2xz;x2 y2/; because it yields nicer parametrizations. For example, using the stereographic representation of S 2 where 2u x.u; v/ D ; u2 C v2 C 1 2v y.u; v/ D ; u2 C v2 C 1 u2 C v2 1 z.u; v/ D ; u2 C v2 C 1 J. -
The Classification of Surfaces
The Classification of Surfaces Elizabeth Gasparim Departamento de Matem´atica, Universidade Federal de Pernambuco Cidade Universit´aria, Recife, PE, BRASIL, 50760-901 ∗ e-mail:[email protected] Pushan Majumdar Institute of Mathematical Sciences,C.I.T campus Taramani. Madras 600-113. India. e-mail:[email protected] This is an expository paper which presents the holomorphic classification of rational complex surfaces from a simple and intuitive point of view, which is not found in the literature. Our approach is to compare this classification with the topological classification of real surfaces. I. INTRODUCTION Our aim here is to present the holomorphic classification of complex rational surfaces in a simple way. We base ourselves on the fact that the topological classification of real surfaces is very intuitive as one can see by following our pictures. One should keep in mind that a real surface is a two dimensional object while a rational surface is a four dimensional object. Hence, we can follow the classification of real surfaces by drawing pictures and use the intuition built in this case to understand the classification of rational surfaces, for which we are no longer able to draw pictures. When classifying real surfaces it is natural to take the following steps. 1. Basic surfaces : where we give the first elementary examples of real surfaces. 2. Two types of surfaces : where we show that real surfaces are naturally divided into two categories, namely orientable and non-orientable. 3. Constructing new surfaces out of basic ones : where we define the operation of connected sum and show how to build new examples of real surfaces.