Real Compact Surfaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Note on 6-Regular Graphs on the Klein Bottle Michiko Kasai [email protected]
Theory and Applications of Graphs Volume 4 | Issue 1 Article 5 2017 Note On 6-regular Graphs On The Klein Bottle Michiko Kasai [email protected] Naoki Matsumoto Seikei University, [email protected] Atsuhiro Nakamoto Yokohama National University, [email protected] Takayuki Nozawa [email protected] Hiroki Seno [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Kasai, Michiko; Matsumoto, Naoki; Nakamoto, Atsuhiro; Nozawa, Takayuki; Seno, Hiroki; and Takiguchi, Yosuke (2017) "Note On 6-regular Graphs On The Klein Bottle," Theory and Applications of Graphs: Vol. 4 : Iss. 1 , Article 5. DOI: 10.20429/tag.2017.040105 Available at: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Note On 6-regular Graphs On The Klein Bottle Authors Michiko Kasai, Naoki Matsumoto, Atsuhiro Nakamoto, Takayuki Nozawa, Hiroki Seno, and Yosuke Takiguchi This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 Kasai et al.: 6-regular graphs on the Klein bottle Abstract Altshuler [1] classified 6-regular graphs on the torus, but Thomassen [11] and Negami [7] gave different classifications for 6-regular graphs on the Klein bottle. In this note, we unify those two classifications, pointing out their difference and similarity. -
Surfaces and Fundamental Groups
HOMEWORK 5 — SURFACES AND FUNDAMENTAL GROUPS DANNY CALEGARI This homework is due Wednesday November 22nd at the start of class. Remember that the notation e1; e2; : : : ; en w1; w2; : : : ; wm h j i denotes the group whose generators are equivalence classes of words in the generators ei 1 and ei− , where two words are equivalent if one can be obtained from the other by inserting 1 1 or deleting eiei− or ei− ei or by inserting or deleting a word wj or its inverse. Problem 1. Let Sn be a surface obtained from a regular 4n–gon by identifying opposite sides by a translation. What is the Euler characteristic of Sn? What surface is it? Find a presentation for its fundamental group. Problem 2. Let S be the surface obtained from a hexagon by identifying opposite faces by translation. Then the fundamental group of S should be given by the generators a; b; c 1 1 1 corresponding to the three pairs of edges, with the relation abca− b− c− coming from the boundary of the polygonal region. What is wrong with this argument? Write down an actual presentation for π1(S; p). What surface is S? Problem 3. The four–color theorem of Appel and Haken says that any map in the plane can be colored with at most four distinct colors so that two regions which share a com- mon boundary segment have distinct colors. Find a cell decomposition of the torus into 7 polygons such that each two polygons share at least one side in common. Remark. -
Simple Infinite Presentations for the Mapping Class Group of a Compact
SIMPLE INFINITE PRESENTATIONS FOR THE MAPPING CLASS GROUP OF A COMPACT NON-ORIENTABLE SURFACE RYOMA KOBAYASHI Abstract. Omori and the author [6] have given an infinite presentation for the mapping class group of a compact non-orientable surface. In this paper, we give more simple infinite presentations for this group. 1. Introduction For g ≥ 1 and n ≥ 0, we denote by Ng,n the closure of a surface obtained by removing disjoint n disks from a connected sum of g real projective planes, and call this surface a compact non-orientable surface of genus g with n boundary components. We can regard Ng,n as a surface obtained by attaching g M¨obius bands to g boundary components of a sphere with g + n boundary components, as shown in Figure 1. We call these attached M¨obius bands crosscaps. Figure 1. A model of a non-orientable surface Ng,n. The mapping class group M(Ng,n) of Ng,n is defined as the group consisting of isotopy classes of all diffeomorphisms of Ng,n which fix the boundary point- wise. M(N1,0) and M(N1,1) are trivial (see [2]). Finite presentations for M(N2,0), M(N2,1), M(N3,0) and M(N4,0) ware given by [9], [1], [14] and [16] respectively. Paris-Szepietowski [13] gave a finite presentation of M(Ng,n) with Dehn twists and arXiv:2009.02843v1 [math.GT] 7 Sep 2020 crosscap transpositions for g + n > 3 with n ≤ 1. Stukow [15] gave another finite presentation of M(Ng,n) with Dehn twists and one crosscap slide for g + n > 3 with n ≤ 1, applying Tietze transformations for the presentation of M(Ng,n) given in [13]. -
An Introduction to Topology the Classification Theorem for Surfaces by E
An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5. -
1 University of California, Berkeley Physics 7A, Section 1, Spring 2009
1 University of California, Berkeley Physics 7A, Section 1, Spring 2009 (Yury Kolomensky) SOLUTIONS TO THE SECOND MIDTERM Maximum score: 100 points 1. (10 points) Blitz (a) hoop, disk, sphere This is a set of simple questions to warm you up. The (b) disk, hoop, sphere problem consists of five questions, 2 points each. (c) sphere, hoop, disk 1. Circle correct answer. Imagine a basketball bouncing on a court. After a dozen or so (d) sphere, disk, hoop bounces, the ball stops. From this, you can con- (e) hoop, sphere, disk clude that Answer: (d). The object with highest moment of (a) Energy is not conserved. inertia has the largest kinetic energy at the bot- (b) Mechanical energy is conserved, but only tom, and would reach highest elevation. The ob- for a single bounce. ject with the smallest moment of inertia (sphere) (c) Total energy in conserved, but mechanical will therefore reach lowest altitude, and the ob- energy is transformed into other types of ject with the largest moment of inertia (hoop) energy (e.g. heat). will be highest. (d) Potential energy is transformed into kinetic 4. A particle attached to the end of a massless rod energy of length R is rotating counter-clockwise in the (e) None of the above. horizontal plane with a constant angular velocity ω as shown in the picture below. Answer: (c) 2. Circle correct answer. In an elastic collision ω (a) momentum is not conserved but kinetic en- ergy is conserved; (b) momentum is conserved but kinetic energy R is not conserved; (c) both momentum and kinetic energy are conserved; (d) neither kinetic energy nor momentum is Which direction does the vector ~ω point ? conserved; (e) none of the above. -
Graphs on Surfaces, the Generalized Euler's Formula and The
Graphs on surfaces, the generalized Euler's formula and the classification theorem ZdenˇekDvoˇr´ak October 28, 2020 In this lecture, we allow the graphs to have loops and parallel edges. In addition to the plane (or the sphere), we can draw the graphs on the surface of the torus or on more complicated surfaces. Definition 1. A surface is a compact connected 2-dimensional manifold with- out boundary. Intuitive explanation: • 2-dimensional manifold without boundary: Each point has a neighbor- hood homeomorphic to an open disk, i.e., \locally, the surface looks at every point the same as the plane." • compact: \The surface can be covered by a finite number of such neigh- borhoods." • connected: \The surface has just one piece." Examples: • The sphere and the torus are surfaces. • The plane is not a surface, since it is not compact. • The closed disk is not a surface, since it has a boundary. From the combinatorial perspective, it does not make sense to distinguish between some of the surfaces; the same graphs can be drawn on the torus and on a deformed torus (e.g., a coffee mug with a handle). For us, two surfaces will be equivalent if they only differ by a homeomorphism; a function f :Σ1 ! Σ2 between two surfaces is a homeomorphism if f is a bijection, continuous, and the inverse f −1 is continuous as well. In particular, this 1 implies that f maps simple continuous curves to simple continuous curves, and thus it maps a drawing of a graph in Σ1 to a drawing of the same graph in Σ2. -
The Geometry of the Disk Complex
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 26, Number 1, January 2013, Pages 1–62 S 0894-0347(2012)00742-5 Article electronically published on August 22, 2012 THE GEOMETRY OF THE DISK COMPLEX HOWARD MASUR AND SAUL SCHLEIMER Contents 1. Introduction 1 2. Background on complexes 3 3. Background on coarse geometry 6 4. Natural maps 8 5. Holes in general and the lower bound on distance 11 6. Holes for the non-orientable surface 13 7. Holes for the arc complex 14 8. Background on three-manifolds 14 9. Holes for the disk complex 18 10. Holes for the disk complex – annuli 19 11. Holes for the disk complex – compressible 22 12. Holes for the disk complex – incompressible 25 13. Axioms for combinatorial complexes 30 14. Partition and the upper bound on distance 32 15. Background on Teichm¨uller space 41 16. Paths for the non-orientable surface 44 17. Paths for the arc complex 47 18. Background on train tracks 48 19. Paths for the disk complex 50 20. Hyperbolicity 53 21. Coarsely computing Hempel distance 57 Acknowledgments 60 References 60 1. Introduction Suppose M is a compact, connected, orientable, irreducible three-manifold. Sup- pose S is a compact, connected subsurface of ∂M so that no component of ∂S bounds a disk in M. In this paper we study the intrinsic geometry of the disk complex D(M,S). The disk complex has a natural simplicial inclusion into the curve complex C(S). Surprisingly, this inclusion is generally not a quasi-isometric embedding; there are disks which are close in the curve complex yet far apart in the disk complex. -
Recognizing Surfaces
RECOGNIZING SURFACES Ivo Nikolov and Alexandru I. Suciu Mathematics Department College of Arts and Sciences Northeastern University Abstract The subject of this poster is the interplay between the topology and the combinatorics of surfaces. The main problem of Topology is to classify spaces up to continuous deformations, known as homeomorphisms. Under certain conditions, topological invariants that capture qualitative and quantitative properties of spaces lead to the enumeration of homeomorphism types. Surfaces are some of the simplest, yet most interesting topological objects. The poster focuses on the main topological invariants of two-dimensional manifolds—orientability, number of boundary components, genus, and Euler characteristic—and how these invariants solve the classification problem for compact surfaces. The poster introduces a Java applet that was written in Fall, 1998 as a class project for a Topology I course. It implements an algorithm that determines the homeomorphism type of a closed surface from a combinatorial description as a polygon with edges identified in pairs. The input for the applet is a string of integers, encoding the edge identifications. The output of the applet consists of three topological invariants that completely classify the resulting surface. Topology of Surfaces Topology is the abstraction of certain geometrical ideas, such as continuity and closeness. Roughly speaking, topol- ogy is the exploration of manifolds, and of the properties that remain invariant under continuous, invertible transforma- tions, known as homeomorphisms. The basic problem is to classify manifolds according to homeomorphism type. In higher dimensions, this is an impossible task, but, in low di- mensions, it can be done. Surfaces are some of the simplest, yet most interesting topological objects. -
The Real Projective Spaces in Homotopy Type Theory
The real projective spaces in homotopy type theory Ulrik Buchholtz Egbert Rijke Technische Universität Darmstadt Carnegie Mellon University Email: [email protected] Email: [email protected] Abstract—Homotopy type theory is a version of Martin- topology and homotopy theory developed in homotopy Löf type theory taking advantage of its homotopical models. type theory (homotopy groups, including the fundamen- In particular, we can use and construct objects of homotopy tal group of the circle, the Hopf fibration, the Freuden- theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key thal suspension theorem and the van Kampen theorem, players in homotopy theory, as certain higher inductive types for example). Here we give an elementary construction in homotopy type theory. The classical definition of RPn, in homotopy type theory of the real projective spaces as the quotient space identifying antipodal points of the RPn and we develop some of their basic properties. n-sphere, does not translate directly to homotopy type theory. R n In classical homotopy theory the real projective space Instead, we define P by induction on n simultaneously n with its tautological bundle of 2-element sets. As the base RP is either defined as the space of lines through the + case, we take RP−1 to be the empty type. In the inductive origin in Rn 1 or as the quotient by the antipodal action step, we take RPn+1 to be the mapping cone of the projection of the 2-element group on the sphere Sn [4]. -
Area-Preserving Diffeomorphisms of the Torus Whose Rotation Sets Have
Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior Salvador Addas-Zanata Instituto de Matem´atica e Estat´ıstica Universidade de S˜ao Paulo Rua do Mat˜ao 1010, Cidade Universit´aria, 05508-090 S˜ao Paulo, SP, Brazil Abstract ǫ In this paper we consider C1+ area-preserving diffeomorphisms of the torus f, either homotopic to the identity or to Dehn twists. We sup- e pose that f has a lift f to the plane such that its rotation set has in- terior and prove, among other things that if zero is an interior point of e e 2 the rotation set, then there exists a hyperbolic f-periodic point Q∈ IR such that W u(Qe) intersects W s(Qe +(a,b)) for all integers (a,b), which u e implies that W (Q) is invariant under integer translations. Moreover, u e s e e u e W (Q) = W (Q) and f restricted to W (Q) is invariant and topologi- u e cally mixing. Each connected component of the complement of W (Q) is a disk with diameter uniformly bounded from above. If f is transitive, u e 2 e then W (Q) =IR and f is topologically mixing in the whole plane. Key words: pseudo-Anosov maps, Pesin theory, periodic disks e-mail: [email protected] 2010 Mathematics Subject Classification: 37E30, 37E45, 37C25, 37C29, 37D25 The author is partially supported by CNPq, grant: 304803/06-5 1 Introduction and main results One of the most well understood chapters of dynamics of surface homeomor- phisms is the case of the torus. -
2 Non-Orientable Surfaces §
2 NON-ORIENTABLE SURFACES § 2 Non-orientable Surfaces § This section explores stranger surfaces made from gluing diagrams. Supplies: Glass Klein bottle • Scarf and hat • Transparency fish • Large pieces of posterboard to cut • Markers • Colored paper grid for making the room a gluing diagram • Plastic tubes • Mobius band templates • Cube templates from Exploring the Shape of Space • 24 Mobius Bands 2 NON-ORIENTABLE SURFACES § Mobius Bands 1. Cut a blank sheet of paper into four long strips. Make one strip into a cylinder by taping the ends with no twist, and make a second strip into a Mobius band by taping the ends together with a half twist (a twist through 180 degrees). 2. Mark an X somewhere on your cylinder. Starting at the X, draw a line down the center of the strip until you return to the starting point. Do the same for the Mobius band. What happens? 3. Make a gluing diagram for a cylinder by drawing a rectangle with arrows. Do the same for a Mobius band. 4. The gluing diagram you made defines a virtual Mobius band, which is a little di↵erent from a paper Mobius band. A paper Mobius band has a slight thickness and occupies a small volume; there is a small separation between its ”two sides”. The virtual Mobius band has zero thickness; it is truly 2-dimensional. Mark an X on your virtual Mobius band and trace down the centerline. You’ll get back to your starting point after only one trip around! 25 Multiple twists 2 NON-ORIENTABLE SURFACES § 5. -
On Generalizing Boy's Surface: Constructing a Generator of the Third Stable Stem
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 298. Number 1. November 1986 ON GENERALIZING BOY'S SURFACE: CONSTRUCTING A GENERATOR OF THE THIRD STABLE STEM J. SCOTT CARTER ABSTRACT. An analysis of Boy's immersion of the projective plane in 3-space is given via a collection of planar figures. An analogous construction yields an immersion of the 3-sphere in 4-space which represents a generator of the third stable stem. This immersion has one quadruple point and a closed curve of triple points whose normal matrix is a 3-cycle. Thus the corresponding multiple point invariants do not vanish. The construction is given by way of a family of three dimensional cross sections. Stable homotopy groups can be interpreted as bordism groups of immersions. The isomorphism between such groups is given by the Pontryagin-Thorn construction on the normal bundle of representative immersions. The self-intersection sets of im- mersed n-manifolds in Rn+l provide stable homotopy invariants. For example, Boy's immersion of the projective plane in 3-space represents a generator of II3(POO); this can be seen by examining the double point set. In this paper a direct analog of Boy's surface is constructed. This is an immersion of S3 in 4-space which represents a generator of II]; the self-intersection data of this immersion are as simple as possible. It may be that appropriate generalizations of this construction will exem- plify a nontrivial Kervaire invariant in dimension 30, 62, and so forth. I. Background. Let i: M n 'T-+ Rn+l denote a general position immersion of a closed n-manifold into real (n + I)-space.