2 Non-Orientable Surfaces §

Total Page:16

File Type:pdf, Size:1020Kb

2 Non-Orientable Surfaces § 2 NON-ORIENTABLE SURFACES § 2 Non-orientable Surfaces § This section explores stranger surfaces made from gluing diagrams. Supplies: Glass Klein bottle • Scarf and hat • Transparency fish • Large pieces of posterboard to cut • Markers • Colored paper grid for making the room a gluing diagram • Plastic tubes • Mobius band templates • Cube templates from Exploring the Shape of Space • 24 Mobius Bands 2 NON-ORIENTABLE SURFACES § Mobius Bands 1. Cut a blank sheet of paper into four long strips. Make one strip into a cylinder by taping the ends with no twist, and make a second strip into a Mobius band by taping the ends together with a half twist (a twist through 180 degrees). 2. Mark an X somewhere on your cylinder. Starting at the X, draw a line down the center of the strip until you return to the starting point. Do the same for the Mobius band. What happens? 3. Make a gluing diagram for a cylinder by drawing a rectangle with arrows. Do the same for a Mobius band. 4. The gluing diagram you made defines a virtual Mobius band, which is a little di↵erent from a paper Mobius band. A paper Mobius band has a slight thickness and occupies a small volume; there is a small separation between its ”two sides”. The virtual Mobius band has zero thickness; it is truly 2-dimensional. Mark an X on your virtual Mobius band and trace down the centerline. You’ll get back to your starting point after only one trip around! 25 Multiple twists 2 NON-ORIENTABLE SURFACES § 5. A cylinder has two boundary circles. How many boundary circles does a Mobius band have? 6. Take a pair of scissors and cut your paper Mobius band down its centerline. What do you get? 7. Take the result from the previous step and cut down its centerline. What do you get now? 8. Take another strip of paper and crease it to divide it into thirds lengthwise and then tape the ends to make a Mobius band. (a) Predict what will happen when you cut your Mobius band along the creases. (b) Cut along the pieces and see what happens. Multiple twists 9. Make a loop with two half twists instead of one. (a) How many sides does it have? (b) What happens if you cut it down the middle? (c) Do you get one loop, two loops, or more? (d) How long are these loop(s)? 26 Multiple twists 2 NON-ORIENTABLE SURFACES § (e) How many half-twists do your resulting loop(s) have? 10. What about a loop with three half twists? 11. Experiment with di↵erent numbers of half twists and try to come up with rules that will let you predict what would happen with n half-twists. You can use the chart below to organize your findings. # loops Length(s) # half-twists # half-twists # sides after cutting after cutting after cutting Notes . 0 1 2 3 4 27 Mobius Band Dissection 2 NON-ORIENTABLE SURFACES § Mobius Band Dissection 1 12. Experiment with cutting a Mobius band lengthwise into strips of width for n di↵erent values of n. You can use the chart below to organize your observations. Cut into strips # loops Length(s) # half-twists 1 of length after cutting after cutting after cutting Notes . n 1 2 1 3 1 4 1 5 28 Mobius Chains 2 NON-ORIENTABLE SURFACES § Mobius Chains 13. Tape two ordinary loops together as shown. Cut each loop down the middle. What happens? 14. What happens if you tape one ordinary loop and one Mobius band together, and then cut down the middle of both? 15. Does it matter which direction you make the half-twist? 16. What happens if you tape two Mobius bands together, and then cut down the middle of both? 17. Does it matter which direction you make the half-twists? 18. Experiment with longer chains, or di↵erent numbers of twists. Watch Vi Hart’s video: Wind and Mr. Ug 29 More Non-Orientable Surfaces 2 NON-ORIENTABLE SURFACES § More Non-Orientable Surfaces What surface do you get when you glue together the sides of the square as shown? 30 More Non-Orientable Surfaces 2 NON-ORIENTABLE SURFACES § What happens as this creature travels through its Klein bottle universe? A path that brings a traveler back to his starting point mirror-reversed is called an • orientation-reversing path. A surface that contains an orientation-reversing path is called non-orientable. • Can you find more than one orientation reversing path in this surface? 31 Tic-Tac-Toe on a Klein Bottle 2 NON-ORIENTABLE SURFACES § Tic-Tac-Toe on a Klein Bottle Which of these are winning positions in Klein bottle Tic-Tac-Toe? • Where should X go to win? • 32 Tic-Tac-Toe on a Klein Bottle 2 NON-ORIENTABLE SURFACES § What are the best moves for X in these positions? • Play a few rounds of Klein bottle Tic-Tac-Toe. • – Is there a winning strategy? – Is it possible to get a cat’s game? – How many essentially di↵erent first moves are there? 33 Tic-Tac-Toe on a Klein Bottle 2 NON-ORIENTABLE SURFACES § What happens when you cut a Klein bottle in half? It depends on how you cut it. Cutting a Klein bottle in half - animation • Cutting a Klein bottle in half - IRL • 34 Non-orientable 3-manifolds 2 NON-ORIENTABLE SURFACES § Non-orientable 3-manifolds Is there a 3-dimensional analog to the Klein bottle? 35 Surfaces made from a square 2 NON-ORIENTABLE SURFACES § Surfaces made from a square We have seen that the following gluing diagrams describe a topological sphere, torus, and Klein bottle. What other topological surfaces result from gluing the edges of a square? 36 The Projective Plane 2 NON-ORIENTABLE SURFACES § The Projective Plane 37 Identify Surfaces Made from Gluing Squares 2 NON-ORIENTABLE SURFACES § Identify Surfaces Made from Gluing Squares Example. What surfaces do these gluing diagrams represent? 38 Orientability and 2-Sidedness 2 NON-ORIENTABLE SURFACES § Orientability and 2-Sidedness Use the four provided templates to build four cubes. The markings on the sides • indicate how opposite sides of the cube should be identified to create four 3- manifolds. These manifolds are called the 3-torus, Klein space, quarter-turn space, and half-turn space. Identify which space is which. 39 Orientability and 2-Sidedness 2 NON-ORIENTABLE SURFACES § For each of the four spaces, imagine a square that sits in the middle of the cube, • halfway up the cube. There are multiple ways to do this, depending how you position the cube. (How many ways for each cube?) For each way, this middle square gets glued up to form a surface in the 3-manifold. For each example, identify the surface and say whether it is orientable or non-orientable, and whether it is one-sided or two-sided. Is it possible to have an orientable surface that is one-sided? two-sided? Is it • possible to have a non-orientable surface that is one-sided? two-sided? If we only consider orientable universes, is a surface non-orientable if and only if • it is one-sided? Prove it or give a counterexample to show it is not true. 40 Shape of Space Video 2 NON-ORIENTABLE SURFACES § Shape of Space Video The Shape of Space Video 41 Gluing diagram and Klein Bottle Game Problems 2 NON-ORIENTABLE SURFACES § Gluing diagram and Klein Bottle Game Problems 1. A ladybug on a Klein bottle walks in a straight line until she returns to her starting point. She walks 1 unit northward for every 1 unit eastward. Draw her path. 2. What surfaces do these gluing diagrams represent? 3. What surfaces do these gluing diagrams represent? 42 Gluing diagram and Klein Bottle Game Problems 2 NON-ORIENTABLE SURFACES § 43 Gluing diagram and Klein Bottle Game Problems 2 NON-ORIENTABLE SURFACES § 4. Try this word search on the Klein bottle. The arrows show how the sides are glued together. 5. Play some more word searches or other games on the Klein bottle on Torus Games. 44 Gluing diagram and Klein Bottle Game Problems 2 NON-ORIENTABLE SURFACES § 6. Find a classmate and try chess on a Klein bottle. Use the starting position below, and glue the left and right side as you would for a torus, but glue the top and bottom with a flip. 7. If a bishop goes out the upper right-hand corner in Klein bottle chess, where does it return? 8. In Klein bottle chess, starting from the initial position above, can the white bishop capture the black rook in one move? Starting from the initial position, can a black knight capture a white rook in one move? 9. Make up your own crossword puzzle on a Klein bottle. There should be a cross- 45 Gluing diagram and Klein Bottle Game Problems 2 NON-ORIENTABLE SURFACES § word puzzle editor built into the Torus Games App. 46.
Recommended publications
  • Note on 6-Regular Graphs on the Klein Bottle Michiko Kasai [email protected]
    Theory and Applications of Graphs Volume 4 | Issue 1 Article 5 2017 Note On 6-regular Graphs On The Klein Bottle Michiko Kasai [email protected] Naoki Matsumoto Seikei University, [email protected] Atsuhiro Nakamoto Yokohama National University, [email protected] Takayuki Nozawa [email protected] Hiroki Seno [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Kasai, Michiko; Matsumoto, Naoki; Nakamoto, Atsuhiro; Nozawa, Takayuki; Seno, Hiroki; and Takiguchi, Yosuke (2017) "Note On 6-regular Graphs On The Klein Bottle," Theory and Applications of Graphs: Vol. 4 : Iss. 1 , Article 5. DOI: 10.20429/tag.2017.040105 Available at: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Note On 6-regular Graphs On The Klein Bottle Authors Michiko Kasai, Naoki Matsumoto, Atsuhiro Nakamoto, Takayuki Nozawa, Hiroki Seno, and Yosuke Takiguchi This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 Kasai et al.: 6-regular graphs on the Klein bottle Abstract Altshuler [1] classified 6-regular graphs on the torus, but Thomassen [11] and Negami [7] gave different classifications for 6-regular graphs on the Klein bottle. In this note, we unify those two classifications, pointing out their difference and similarity.
    [Show full text]
  • An Introduction to Topology the Classification Theorem for Surfaces by E
    An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5.
    [Show full text]
  • Graphs on Surfaces, the Generalized Euler's Formula and The
    Graphs on surfaces, the generalized Euler's formula and the classification theorem ZdenˇekDvoˇr´ak October 28, 2020 In this lecture, we allow the graphs to have loops and parallel edges. In addition to the plane (or the sphere), we can draw the graphs on the surface of the torus or on more complicated surfaces. Definition 1. A surface is a compact connected 2-dimensional manifold with- out boundary. Intuitive explanation: • 2-dimensional manifold without boundary: Each point has a neighbor- hood homeomorphic to an open disk, i.e., \locally, the surface looks at every point the same as the plane." • compact: \The surface can be covered by a finite number of such neigh- borhoods." • connected: \The surface has just one piece." Examples: • The sphere and the torus are surfaces. • The plane is not a surface, since it is not compact. • The closed disk is not a surface, since it has a boundary. From the combinatorial perspective, it does not make sense to distinguish between some of the surfaces; the same graphs can be drawn on the torus and on a deformed torus (e.g., a coffee mug with a handle). For us, two surfaces will be equivalent if they only differ by a homeomorphism; a function f :Σ1 ! Σ2 between two surfaces is a homeomorphism if f is a bijection, continuous, and the inverse f −1 is continuous as well. In particular, this 1 implies that f maps simple continuous curves to simple continuous curves, and thus it maps a drawing of a graph in Σ1 to a drawing of the same graph in Σ2.
    [Show full text]
  • Recognizing Surfaces
    RECOGNIZING SURFACES Ivo Nikolov and Alexandru I. Suciu Mathematics Department College of Arts and Sciences Northeastern University Abstract The subject of this poster is the interplay between the topology and the combinatorics of surfaces. The main problem of Topology is to classify spaces up to continuous deformations, known as homeomorphisms. Under certain conditions, topological invariants that capture qualitative and quantitative properties of spaces lead to the enumeration of homeomorphism types. Surfaces are some of the simplest, yet most interesting topological objects. The poster focuses on the main topological invariants of two-dimensional manifolds—orientability, number of boundary components, genus, and Euler characteristic—and how these invariants solve the classification problem for compact surfaces. The poster introduces a Java applet that was written in Fall, 1998 as a class project for a Topology I course. It implements an algorithm that determines the homeomorphism type of a closed surface from a combinatorial description as a polygon with edges identified in pairs. The input for the applet is a string of integers, encoding the edge identifications. The output of the applet consists of three topological invariants that completely classify the resulting surface. Topology of Surfaces Topology is the abstraction of certain geometrical ideas, such as continuity and closeness. Roughly speaking, topol- ogy is the exploration of manifolds, and of the properties that remain invariant under continuous, invertible transforma- tions, known as homeomorphisms. The basic problem is to classify manifolds according to homeomorphism type. In higher dimensions, this is an impossible task, but, in low di- mensions, it can be done. Surfaces are some of the simplest, yet most interesting topological objects.
    [Show full text]
  • Area-Preserving Diffeomorphisms of the Torus Whose Rotation Sets Have
    Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior Salvador Addas-Zanata Instituto de Matem´atica e Estat´ıstica Universidade de S˜ao Paulo Rua do Mat˜ao 1010, Cidade Universit´aria, 05508-090 S˜ao Paulo, SP, Brazil Abstract ǫ In this paper we consider C1+ area-preserving diffeomorphisms of the torus f, either homotopic to the identity or to Dehn twists. We sup- e pose that f has a lift f to the plane such that its rotation set has in- terior and prove, among other things that if zero is an interior point of e e 2 the rotation set, then there exists a hyperbolic f-periodic point Q∈ IR such that W u(Qe) intersects W s(Qe +(a,b)) for all integers (a,b), which u e implies that W (Q) is invariant under integer translations. Moreover, u e s e e u e W (Q) = W (Q) and f restricted to W (Q) is invariant and topologi- u e cally mixing. Each connected component of the complement of W (Q) is a disk with diameter uniformly bounded from above. If f is transitive, u e 2 e then W (Q) =IR and f is topologically mixing in the whole plane. Key words: pseudo-Anosov maps, Pesin theory, periodic disks e-mail: [email protected] 2010 Mathematics Subject Classification: 37E30, 37E45, 37C25, 37C29, 37D25 The author is partially supported by CNPq, grant: 304803/06-5 1 Introduction and main results One of the most well understood chapters of dynamics of surface homeomor- phisms is the case of the torus.
    [Show full text]
  • GEOMETRY FINAL 1 (A): If M Is Non-Orientable and P ∈ M, Is M
    GEOMETRY FINAL CLAY SHONKWILER 1 (a): If M is non-orientable and p ∈ M, is M − {p} orientable? Answer: No. Suppose M − {p} is orientable, and let (Uα, xα) be an atlas that gives an orientation on M − {p}. Now, let (V, y) be a coordinate chart on M (in some atlas) containing the point p. If (U, x) is a coordinate chart such that U ∩ V 6= ∅, then, since x and y are both smooth maps with smooth inverses, the composition x ◦ y−1 : y(U ∩ V ) → x(U ∩ V ) is a smooth map. Hence, the collection {(Uα, xα), (V, α)} gives an atlas on M. Now, since M − {p} is orientable, i ! ∂xα det j > 0 ∂xβ for all α, β. However, since M is non-orientable, there must exist coordinate charts where the Jacobian is negative on the overlap; clearly, one of each such pair must be (V, y). Hence, there exists β such that ! ∂yi det j ≤ 0. ∂xβ Suppose this is true for all β such that Uβ ∩V 6= ∅. Then, since y(q) = (y1(q), . , yn(q)), lety ˜ be such thaty ˜(p) = (y2(p), y1(p), y3(p), y4(p), . , yn(p)). Theny ˜ : V → y˜(V ) is a diffeomorphism, so (V, y˜) gives a coordinate chart containing p and ! ! ∂y˜i ∂yi det j = − det j ≥ 0 ∂xβ ∂xβ for all β such that Uβ ∩ V 6= ∅. Hence, unless equality holds in some case, {(Uα, xα), (V, y˜)} defines an orientation on M, contradicting the fact that M is non-orientable. Additionally, it’s clear that equality can never hold, since y : Uβ ∩ V → y(Uβ ∩ V ) is a diffeomorphism and, thus, has full rank.
    [Show full text]
  • Classification of Compact Orientable Surfaces Using Morse Theory
    U.U.D.M. Project Report 2016:37 Classification of Compact Orientable Surfaces using Morse Theory Johan Rydholm Examensarbete i matematik, 15 hp Handledare: Thomas Kragh Examinator: Jörgen Östensson Augusti 2016 Department of Mathematics Uppsala University Classication of Compact Orientable Surfaces using Morse Theory Johan Rydholm 1 Introduction Here we classify surfaces up to dieomorphism. The classication is done in section Construction of the Genus-g Toruses, as an application of the previously developed Morse theory. The objects which we study, surfaces, are dened in section Surfaces, together with other denitions and results which lays the foundation for the rest of the essay. Most of the section Surfaces is taken from chapter 0 in [2], and gives a quick introduction to, among other things, smooth manifolds, dieomorphisms, smooth vector elds and connected sums. The material in section Morse Theory and section Existence of a Good Morse Function uses mainly chapter 1 in [5] and chapters 2,4 and 5 in [4] (but not necessarily only these chapters). In these two sections we rst prove Lemma of Morse, which is probably the single most important result, even though the proof is far from the hardest. We prove the existence of a Morse function, existence of a self-indexing Morse function, and nally the existence of a good Morse function, on any surface; while doing this we also prove the existence of one of our most important tools: a gradient-like vector eld for the Morse function. The results in sections Morse Theory and Existence of a Good Morse Func- tion contains the main resluts and ideas.
    [Show full text]
  • Equivariant Orientation Theory
    EQUIVARIANT ORIENTATION THEORY S.R. COSTENOBLE, J.P. MAY, AND S. WANER Abstract. We give a long overdue theory of orientations of G-vector bundles, topological G-bundles, and spherical G-fibrations, where G is a compact Lie group. The notion of equivariant orientability is clear and unambiguous, but it is surprisingly difficult to obtain a satisfactory notion of an equivariant orien- tation such that every orientable G-vector bundle admits an orientation. Our focus here is on the geometric and homotopical aspects, rather than the coho- mological aspects, of orientation theory. Orientations are described in terms of functors defined on equivariant fundamental groupoids of base G-spaces, and the essence of the theory is to construct an appropriate universal tar- get category of G-vector bundles over orbit spaces G=H. The theory requires new categorical concepts and constructions that should be of interest in other subjects, such as algebraic geometry. Contents Introduction 2 Part I. Fundamental groupoids and categories of bundles 5 1. The equivariant fundamental groupoid 5 2. Categories of G-vector bundles and orientability 6 3. The topologized fundamental groupoid 8 4. The topologized category of G-vector bundles over orbits 9 Part II. Categorical representation theory and orientations 11 5. Bundles of Groupoids 11 6. Skeletal, faithful, and discrete bundles of groupoids 13 7. Representations and orientations of bundles of groupoids 16 8. Saturated and supersaturated representations 18 9. Universal orientable representations 23 Part III. Examples of universal orientable representations 26 10. Cyclic groups of prime order 26 11. Orientations of V -dimensional G-bundles 30 12.
    [Show full text]
  • How to Make a Torus Laszlo C
    DO THE MATH! How to Make a Torus Laszlo C. Bardos sk a topologist how to make a model of a torus and your instructions will be to tape two edges of a piece of paper together to form a tube and then to tape the ends of the tube together. This process is math- Aematically correct, but the result is either a flat torus or a crinkled mess. A more deformable material such as cloth gives slightly better results, but sewing a torus exposes an unexpected property of tori. Start by sewing the torus The sticky notes inside out so that the stitching will be hidden when illustrate one of three the torus is reversed. Leave a hole in the side for this types of circular cross purpose. Wait a minute! Can you even turn a punctured sections. We find the torus inside out? second circular cross Surprisingly, the answer is yes. However, doing so section by cutting a yields a baffling result. A torus that started with a torus with a plane pleasing doughnut shape transforms into a one with perpendicular to different, almost unrecognizable dimensions when turned the axis of revolu- right side out. (See figure 1.) tion (both such cross So, if the standard model of a torus doesn’t work well, sections are shown we’ll need to take another tack. A torus is generated Figure 2. A torus made from on the green torus in sticky notes. by sweeping a figure 3). circle around But there is third, an axis in the less obvious way to same plane as create a circular cross the circle.
    [Show full text]
  • Torus and Klein Bottle Tessellations with a Single Tile of Pied De Poule (Houndstooth)
    Bridges 2018 Conference Proceedings Torus and Klein Bottle Tessellations with a Single Tile of Pied de Poule (Houndstooth) Loe M.G. Feijs Eindhoven University of Technology, The Netherlands; [email protected] Abstract We design a 3D surface made by continuous deformation applied to a single tile. The contour edges are aligned according to the network topology of a Pied-de-poule tessellation. In a classical tessellation, each edge is aligned with a matching edge of a neighbouring tile, but here the single tile acts as a neighbouring tile too. The continuous deformation mapping the Pied-de-poule tile to the 3D surface preserves the staircase nature of the contour edges of the tile. It is a diffeomorphism. The 3D surface thus appears as a torus with gaps where the sides of the tile meet. Next we present another surface, also a single Pied-de-poule tile, but with different tessellation type, a Klein bottle. Both surfaces are 3D printed as innovative art works, connecting topological manifolds and the famous fashion pattern. Introduction Pied-de-poule (houndstooth) denotes a family of fashion patterns, see the Bridges 2012 paper [3] and Abdalla Ahmed’s work on weaving design [1] for more background information. In this project, we study tessellations obtained by continuous deformation of a Pied-de-poule’s basic tile. In particular, we construct tessellations with a single copy of one basic tile. The network topology of the tessellation was analysed in [3]. A typical piece of Pied-de-poule fabric can be seen in Figure 1 (left).
    [Show full text]
  • Mapping Class Group Notes
    MAPPING CLASS GROUP NOTES WADE BLOOMQUIST These notes look to introduce the mapping class groups of surfaces, explicitly compute examples of low complexity, and introduce the basics on projective representations that will be helpful going forward when looking at quantum representations of mapping class groups. The vast majority of the material is modelled off how it is presented in A Primer on Mapping Class Groups by Benson Farb and Dan Margalit. Unfortunately many accompanying pictures given in lecture are going to be left out due to laziness. 1. Fixing Notation Let Σ be a compact connected oriented surface potentially with punctures. Note that when the surface has punctures then it is no longer compact, but it is necessary to start with an un-punctured compact surface first. This is also what is called a surface of finite type. • g will be the genus of Σ, determined by connect summing g tori to the 2−sphere. • b will be the number of boundary components, determined by removing b open disks with disjoint closure • n will be the number of punctures determiend by removing n points from the interior of the surface b We will denote a surface by Σg;n, where the indices b and n may be excluded if they are zero. We will also use the notation S2 for the 2−sphere, D2 for the disk, and T 2 for the torus (meaning the genus 1 surface). The main invariant (up to homeomorphism) of surfaces is the Euler Char- acteristic, χ(Σ) defined as b χ(Σg;n) := 2 − 2g − (b + n): The classification of surfaces tells us that Σ is determined by any 3 of g; b; n; χ(Σ).
    [Show full text]
  • Topologies How to Design
    Networks: Topologies How to Design Gilad Shainer, [email protected] TOP500 Statistics 2 TOP500 Statistics 3 World Leading Large-Scale Systems • National Supercomputing Centre in Shenzhen – Fat-tree, 5.2K nodes, 120K cores, NVIDIA GPUs, China (Petaflop) • Tokyo Institute of Technology – Fat-tree, 4K nodes, NVIDIA GPUs, Japan (Petaflop) • Commissariat a l'Energie Atomique (CEA) – Fat-tree, 4K nodes, 140K cores, France (Petaflop) • Los Alamos National Lab - Roadrunner – Fat-tree, 4K nodes, 130K cores, USA (Petaflop) • NASA – Hypercube, 9.2K nodes, 82K cores – NASA, USA • Jülich JuRoPa – Fat-tree, 3K nodes, 30K cores, Germany • Sandia National Labs – Red Sky – 3D-Torus, 5.4K nodes, 43K cores – Sandia “Red Sky”, USA 4 ORNL “Spider” System – Lustre File System • Oak Ridge Nation Lab central storage system – 13400 drives – 192 Lustre OSS – 240GB/s bandwidth – InfiniBand interconnect – 10PB capacity 5 Network Topologies • Fat-tree (CLOS), Mesh, 3D-Torus topologies • CLOS (fat-tree) – Can be fully non-blocking (1:1) or blocking (x:1) – Typically enables best performance • Non blocking bandwidth, lowest network latency • Mesh or 3D Torus – Blocking network, cost-effective for systems at scale – Great performance solutions for applications with locality 0,0 0,1 0,2 – Support for dedicate sub-networks 1,0 1,1 1,2 2,0 2,1 2,2 – Simple expansion for future growth 6 d-Dimensional Torus Topology • Formal definition – T=(V,E) is said to be d-dimensional torus of size N1xN2x…xNd if: • V={(v1,v2,…,vd) : 0 ≤ vi ≤ Ni-1} • E={(uv) : exists j s.t.
    [Show full text]