Lectures on the Mapping Class Group of a Surface

Total Page:16

File Type:pdf, Size:1020Kb

Lectures on the Mapping Class Group of a Surface LECTURES ON THE MAPPING CLASS GROUP OF A SURFACE THOMAS KWOK-KEUNG AU, FENG LUO, AND TIAN YANG Abstract. In these lectures, we give the proofs of two basic theorems on surface topology, namely, the work of Dehn and Lickorish on generating the mapping class group of a surface by Dehn-twists; and the work of Dehn and Nielsen on relating self-homeomorphisms of a surface and automorphisms of the fundamental group of the surface. Some of the basic materials on hyper- bolic geometry and large scale geometry are introduced. Contents Introduction 1 1. Mapping Class Group 2 2. Dehn-Lickorish Theorem 13 3. Hyperbolic Plane and Hyperbolic Surfaces 22 3.1. A Crash Introduction to the Hyperbolic Plane 22 3.2. Hyperbolic Geometry on Surfaces 29 4. Quasi-Isometry and Large Scale Geometry 36 5. Dehn-Nielsen Theorem 44 5.1. Injectivity of ª 45 5.2. Surjectivity of ª 46 References 52 2010 Mathematics Subject Classi¯cation. Primary: 57N05; Secondary: 57M60, 57S05. Key words and phrases. Mapping class group, Dehn-Lickorish, Dehn-Nielsen. i ii LECTURES ON MAPPING CLASS GROUPS 1 Introduction The purpose of this paper is to give a quick introduction to the mapping class group of a surface. We will prove two main theorems in the theory, namely, the theorem of Dehn-Lickorish that the mapping class group is generated by Dehn twists and the theorem of Dehn-Nielsen that the mapping class group is equal to the outer-automorphism group of the fundamental group. We will present a proof of Dehn-Nielsen realization theorem following the argument of B. Farb and D. Margalit, [De, FM]. Along the way of the proof, we will introduce some of the basic notions and tools used in the surface theory. This paper is the result of a series of lectures given by the second author in the Center of Mathematical Sciences, Zhejiang University, China during the summer of 2008. It aims at providing a concise understanding of the surface theory, especially suitable for graduate students. The prerequisites for these lectures have been kept to a minimum. Basic knowledge of algebraic topology and Riemannian geometry is all one needs to follow the lectures. Let § be a compact oriented surface. A homeomorphism Á :§ ! § is called a Dehn twist if its support A, the closure of fx 2 § j Á(x) 6= xg, is homeomorphic to an annulus under a homeomorphism I : S1 £[0; 2] ! A and I¡1ÁI is a 2¼-twist on the annulus. A more precise de¯nition will be given later in De¯nition 1.16. The goal of these lectures is to prove the following two theorems. Dehn-Lickorish Theorem . Suppose h :§ ! § is an orientation preserving self-homeomorphism of a surface § so that hj@§ = id. Then there exists a ¯nite set of Dehn twists Á1;:::;Án of § such that h is homotopic to the composition Á1 ± ¢ ¢ ¢ ± Án. In fact, Dehn and Lickorish proved a stronger theorem that Ái's can be chosen from a ¯xed ¯nite set. 2 THOMAS AU, FENG LUO, AND TIAN YANG Dehn-Nielsen Theorem . Let § be a closed surface of nonzero genus. Then the group of self-homeomorphisms on § modulo homotopy is isomorphic to the outer automorphism group of the fundamental group of §. The theorem may be stated in a simplier form in terms of the notion of mapping class groups, which we will discuss later. In the ¯rst section, we will introduce the notions of mapping class groups and Dehn twists. Simple examples of mapping class groups and basic properties of Dehn twists will also be given. In the second section, how the mapping class group of a surface is generated by Dehn twists will be discussed. Indeed, we will prove the Dehn-Lickorish Theorem. Section three is a discussion of the hyperbolic geometry of surfaces. It consists of a quick introduction of the hyperbolic plane and the geometric interpretation of the fundamental group of a surface. In section four, quasi-isometries and large scale geometry are introduced. Our attention is on facts pertinent to our study of mapping class groups. In the last section, we will prove the Dehn-Nielsen Theorem. The authors are very grateful to the Center of Mathematical Sciences and the hosts for the wonderful and quiet environment where people could think and work well. The workshop also provided enlightenment to a number of mathematicians and graduate students. Particular thanks should be addressed to the organiz- ers especially Professor Lizhen Ji. We also thank the referee for many helpful suggestions on improving the exposition in this paper. 1. Mapping Class Group In this section, we will introduce basic notions about mapping class groups and elementary techniques in handling Dehn twists. Let § = §g;r be the compact oriented surface of genus g with r boundary com- ponents, r ¸ 0. LECTURES ON MAPPING CLASS GROUPS 3 De¯nition 1.1. The mapping class group of § is given by def ¡(§) :== Homeo(§)/ ' ; where Homeo(§) is the set of homeomorphisms from § to § and the relation ' is homotopy of maps. Remark . The relationship between homotopic and isotopic homeomorphisms on surfaces was established by Baer. Baer's theorem says that they are the same in the following sense. Theorem 1.2. (Baer) Suppose f and g are two homotopic homeomorphisms of a compact oriented surface X so that f = g on the boundary of X. Then f is isotopic to g by an isotopy leaving each point in the boundary of X ¯xed. One may consult [St2, ch. 6] or [Ep] for a proof, which includes a discussion on isotopic curve systems on surfaces. For this reason, we will not address the isotopy issues in this paper. The theory of mapping class groups plays an important role in the study of low-dimensional topology. Example 1.3. Let Hg be the genus g handlebody, that is, the regular neigh- borhood of a wedge of g circles in the 3-space. The boundary of Hg is §g;0. It is well-known that for each closed orientable 3-manifold M, there is a positive number g and an h 2 ¡(§g;0) such that M = Hg [h Hg : Such a decomposition of a 3-manifold is called a Heegaard Splitting. In other words, M is obtained by gluing up two copies of Hg by a homeomorphism h of their boundary surfaces §g;0. The resulting manifold M depends only on the homotopy class of h. 4 THOMAS AU, FENG LUO, AND TIAN YANG Example 1.4. Thurston's Virtual Fibre Conjecture states that any closed hy- perbolic 3-manifold M has a ¯nite cover N such that N = §g;0 £ [0; 1]/ f (x; 0) » (h(x); 1) : x 2 §g;0 g ; where h is a homeomorphism on §g;0. In short, N is a surface bundle over the circle. This is one of the main conjectures in 3-manifold theory after the resolution of the Geometrization Conjecture. Example 1.5. Mapping class groups are needed in several other important areas. For example, in the theory of Lefschetz ¯brations of 4-manifolds, [Au, Don, Gom]; in the TeichmÄullertheory of surfaces in which the mapping class group acts on the Teichm Ämullerspace, [BH, Pa]; and in the theory of the Moduli space of algebraic curves and Riemann surfaces, [HL]. We will assume basic facts from topology. For example, the Euler Characteristic Â(§g;r) of a surface satis¯es Â(§g;r) = 2 ¡ 2g ¡ r : 2 2 Surfaces § = §g;r with Â(§) > 0 are the sphere S and the disk D ; for Â(§) = 0, we have the torus T2 and the annulus S1 £ [0; 1]; all others are of Â(§) < 0. As a beginning, the reader is encouraged to work out the following. Example 1.6. ¡(S2) =» Z=(2Z) and ¡(D2) = f id g. The following was proved by J. Nielsen in his Ph.D. thesis in 1913. Theorem 1.7. (Nielsen) ¡(T2) =» GL(2; Z). ± Proof. We will represent T2 as the quotient space R2 Z2. There is a natural homomorphism 2 2 ½: ¡(T ) ! Aut(H1(T ; Z)) = GL(2; Z) that takes a homeomorphism class [h] to the induced map h¤ on the ¯rst homology group. LECTURES ON MAPPING CLASS GROUPS 5 First, we will show that ½ is surjective, i.e., Image(½) = GL(2; Z). Let A 2 GL(2; Z). The integral matrix A can be seen as the linear map (by abuse of language) A: R2 ! R2; x 7! Ax for x 2 R2 ; which preserves the integer lattice, i.e., A(x + n) = A(x) + A(n) with A(n) 2 Z2 for every x 2 R2 and n 2 Z2. This clearly induces a homeomorphism on the quotient A~: T2 ! T2; [x] 7! [Ax] : It is easy to verify that ½(A~) = (A~)¤ = A with a suitable identi¯cation of n and A(n) 2 Z2 with the standard basis of R2. Second, to prove that ½ is injective, we will show ker(½) = f id g. 2 2 2 Let [h] 2 ¡(T ) where h 2 Homeo(T ) and h¤ = id. Represent T as the quotient space of [0; 1] £ [0; 1] by gluing [0; 1] £ f 0 g to [0; 1] £ f 1 g and f 0 g £ [0; 1] to f 1 g £ [0; 1]. Let a; b denote the curves in T2 corresponding to quotient classes of [0; 1] £ f 0; 1 g and f 0; 1 g £ [0; 1], respectively. Let P be the point of intersection of a and b. a b b P a Figure 1.1 2 » 2 » 2 2 Then H1(T ; Z) = ¼1(T ;P ) = ha; bi = Z .
Recommended publications
  • Note on 6-Regular Graphs on the Klein Bottle Michiko Kasai [email protected]
    Theory and Applications of Graphs Volume 4 | Issue 1 Article 5 2017 Note On 6-regular Graphs On The Klein Bottle Michiko Kasai [email protected] Naoki Matsumoto Seikei University, [email protected] Atsuhiro Nakamoto Yokohama National University, [email protected] Takayuki Nozawa [email protected] Hiroki Seno [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag Part of the Discrete Mathematics and Combinatorics Commons Recommended Citation Kasai, Michiko; Matsumoto, Naoki; Nakamoto, Atsuhiro; Nozawa, Takayuki; Seno, Hiroki; and Takiguchi, Yosuke (2017) "Note On 6-regular Graphs On The Klein Bottle," Theory and Applications of Graphs: Vol. 4 : Iss. 1 , Article 5. DOI: 10.20429/tag.2017.040105 Available at: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Note On 6-regular Graphs On The Klein Bottle Authors Michiko Kasai, Naoki Matsumoto, Atsuhiro Nakamoto, Takayuki Nozawa, Hiroki Seno, and Yosuke Takiguchi This article is available in Theory and Applications of Graphs: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss1/5 Kasai et al.: 6-regular graphs on the Klein bottle Abstract Altshuler [1] classified 6-regular graphs on the torus, but Thomassen [11] and Negami [7] gave different classifications for 6-regular graphs on the Klein bottle. In this note, we unify those two classifications, pointing out their difference and similarity.
    [Show full text]
  • An Introduction to Topology the Classification Theorem for Surfaces by E
    An Introduction to Topology An Introduction to Topology The Classification theorem for Surfaces By E. C. Zeeman Introduction. The classification theorem is a beautiful example of geometric topology. Although it was discovered in the last century*, yet it manages to convey the spirit of present day research. The proof that we give here is elementary, and its is hoped more intuitive than that found in most textbooks, but in none the less rigorous. It is designed for readers who have never done any topology before. It is the sort of mathematics that could be taught in schools both to foster geometric intuition, and to counteract the present day alarming tendency to drop geometry. It is profound, and yet preserves a sense of fun. In Appendix 1 we explain how a deeper result can be proved if one has available the more sophisticated tools of analytic topology and algebraic topology. Examples. Before starting the theorem let us look at a few examples of surfaces. In any branch of mathematics it is always a good thing to start with examples, because they are the source of our intuition. All the following pictures are of surfaces in 3-dimensions. In example 1 by the word “sphere” we mean just the surface of the sphere, and not the inside. In fact in all the examples we mean just the surface and not the solid inside. 1. Sphere. 2. Torus (or inner tube). 3. Knotted torus. 4. Sphere with knotted torus bored through it. * Zeeman wrote this article in the mid-twentieth century. 1 An Introduction to Topology 5.
    [Show full text]
  • [Math.GT] 9 Jul 2003
    LOW-DIMENSIONAL HOMOLOGY GROUPS OF MAPPING CLASS GROUPS: A SURVEY MUSTAFA KORKMAZ Abstract. In this survey paper, we give a complete list of known re- sults on the first and the second homology groups of surface mapping class groups. Some known results on higher (co)homology are also men- tioned. 1. Introduction n Let Σg,r be a connected orientable surface of genus g with r boundary n components and n punctures. The mapping class group of Σg,r may be defined in different ways. For our purpose, it is defined as the group of the n n isotopy classes of orientation-preserving diffeomorphisms Σg,r → Σg,r. The diffeomorphisms and the isotopies are assumed to fix each puncture and the n points on the boundary. We denote the mapping class group of Σg,r by n Γg,r. Here, we see the punctures on the surface as distinguished points. If r and/or n is zero, then we omit it from the notation. We write Σ for the n surface Σg,r when we do not want to emphasize g,r,n. The theory of mapping class groups plays a central role in low-dimensional n topology. When r = 0 and 2g + n ≥ 3, the mapping class group Γg acts properly discontinuously on the Teichm¨uller space which is homeomorphic to some Euclidean space and the stabilizer of each point is finite. The quotient of the Teichm¨uller space by the action of the mapping class group is the moduli space of complex curves. Recent developments in low-dimensional topology made the algebraic structure of the mapping class group more important.
    [Show full text]
  • NOTES on the TOPOLOGY of MAPPING CLASS GROUPS Before
    NOTES ON THE TOPOLOGY OF MAPPING CLASS GROUPS NICHOLAS G. VLAMIS Abstract. This is a short collection of notes on the topology of big mapping class groups stemming from discussions the author had at the AIM workshop \Surfaces of infinite type". We show that big mapping class groups are neither locally compact nor compactly generated. We also show that all big mapping class groups are homeomorphic to NN. Finally, we give an infinite family of big mapping class groups that are CB generated and hence have a well-defined quasi-isometry class. Before beginning, the author would like to make the disclaimer that the arguments contained in this note came out of discussions during a workshop at the American Institute of Mathematics and therefore the author does not claim sole credit, espe- cially in the case of Proposition 10 in which the author has completely borrowed the proof. For the entirety of the note, a surface is a connected, oriented, second countable, Hausdorff 2-manifold. The mapping class group of a surface S is denoted MCG(S). A mapping class group is big if the underlying surface is of infinite topological type, that is, if the fundamental group of the surface cannot be finitely generated. 1.1. Topology of mapping class groups. Let C(S) denote the set of isotopy classes of simple closed curves on S. Given a finite collection A of C(S), let UA = ff 2 MCG(S): f(a) = a for all a 2 Ag: We define the permutation topology on MCG(S) to be the topology with basis consisting of sets of the form f · UA, where A ⊂ C(S) is finite and f 2 MCG(S).
    [Show full text]
  • Graphs on Surfaces, the Generalized Euler's Formula and The
    Graphs on surfaces, the generalized Euler's formula and the classification theorem ZdenˇekDvoˇr´ak October 28, 2020 In this lecture, we allow the graphs to have loops and parallel edges. In addition to the plane (or the sphere), we can draw the graphs on the surface of the torus or on more complicated surfaces. Definition 1. A surface is a compact connected 2-dimensional manifold with- out boundary. Intuitive explanation: • 2-dimensional manifold without boundary: Each point has a neighbor- hood homeomorphic to an open disk, i.e., \locally, the surface looks at every point the same as the plane." • compact: \The surface can be covered by a finite number of such neigh- borhoods." • connected: \The surface has just one piece." Examples: • The sphere and the torus are surfaces. • The plane is not a surface, since it is not compact. • The closed disk is not a surface, since it has a boundary. From the combinatorial perspective, it does not make sense to distinguish between some of the surfaces; the same graphs can be drawn on the torus and on a deformed torus (e.g., a coffee mug with a handle). For us, two surfaces will be equivalent if they only differ by a homeomorphism; a function f :Σ1 ! Σ2 between two surfaces is a homeomorphism if f is a bijection, continuous, and the inverse f −1 is continuous as well. In particular, this 1 implies that f maps simple continuous curves to simple continuous curves, and thus it maps a drawing of a graph in Σ1 to a drawing of the same graph in Σ2.
    [Show full text]
  • The Birman-Hilden Theory
    THE BIRMAN{HILDEN THEORY DAN MARGALIT AND REBECCA R. WINARSKI Abstract. In the 1970s Joan Birman and Hugh Hilden wrote several papers on the problem of relating the mapping class group of a surface to that of a cover. We survey their work, give an overview of the subsequent developments, and discuss open questions and new directions. 1. Introduction In the early 1970s Joan Birman and Hugh Hilden wrote a series of now- classic papers on the interplay between mapping class groups and covering spaces. The initial goal was to determine a presentation for the mapping class group of S2, the closed surface of genus two (it was not until the late 1970s that Hatcher and Thurston [33] developed an approach for finding explicit presentations for mapping class groups). The key innovation by Birman and Hilden is to relate the mapping class group Mod(S2) to the mapping class group of S0;6, a sphere with six marked points. Presentations for Mod(S0;6) were already known since that group is closely related to a braid group. The two surfaces S2 and S0;6 are related by a two-fold branched covering map S2 ! S0;6: arXiv:1703.03448v1 [math.GT] 9 Mar 2017 The six marked points in the base are branch points. The deck transforma- tion is called the hyperelliptic involution of S2, and we denote it by ι. Every element of Mod(S2) has a representative that commutes with ι, and so it follows that there is a map Θ : Mod(S2) ! Mod(S0;6): The kernel of Θ is the cyclic group of order two generated by (the homotopy class of) the involution ι.
    [Show full text]
  • Recognizing Surfaces
    RECOGNIZING SURFACES Ivo Nikolov and Alexandru I. Suciu Mathematics Department College of Arts and Sciences Northeastern University Abstract The subject of this poster is the interplay between the topology and the combinatorics of surfaces. The main problem of Topology is to classify spaces up to continuous deformations, known as homeomorphisms. Under certain conditions, topological invariants that capture qualitative and quantitative properties of spaces lead to the enumeration of homeomorphism types. Surfaces are some of the simplest, yet most interesting topological objects. The poster focuses on the main topological invariants of two-dimensional manifolds—orientability, number of boundary components, genus, and Euler characteristic—and how these invariants solve the classification problem for compact surfaces. The poster introduces a Java applet that was written in Fall, 1998 as a class project for a Topology I course. It implements an algorithm that determines the homeomorphism type of a closed surface from a combinatorial description as a polygon with edges identified in pairs. The input for the applet is a string of integers, encoding the edge identifications. The output of the applet consists of three topological invariants that completely classify the resulting surface. Topology of Surfaces Topology is the abstraction of certain geometrical ideas, such as continuity and closeness. Roughly speaking, topol- ogy is the exploration of manifolds, and of the properties that remain invariant under continuous, invertible transforma- tions, known as homeomorphisms. The basic problem is to classify manifolds according to homeomorphism type. In higher dimensions, this is an impossible task, but, in low di- mensions, it can be done. Surfaces are some of the simplest, yet most interesting topological objects.
    [Show full text]
  • Area-Preserving Diffeomorphisms of the Torus Whose Rotation Sets Have
    Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior Salvador Addas-Zanata Instituto de Matem´atica e Estat´ıstica Universidade de S˜ao Paulo Rua do Mat˜ao 1010, Cidade Universit´aria, 05508-090 S˜ao Paulo, SP, Brazil Abstract ǫ In this paper we consider C1+ area-preserving diffeomorphisms of the torus f, either homotopic to the identity or to Dehn twists. We sup- e pose that f has a lift f to the plane such that its rotation set has in- terior and prove, among other things that if zero is an interior point of e e 2 the rotation set, then there exists a hyperbolic f-periodic point Q∈ IR such that W u(Qe) intersects W s(Qe +(a,b)) for all integers (a,b), which u e implies that W (Q) is invariant under integer translations. Moreover, u e s e e u e W (Q) = W (Q) and f restricted to W (Q) is invariant and topologi- u e cally mixing. Each connected component of the complement of W (Q) is a disk with diameter uniformly bounded from above. If f is transitive, u e 2 e then W (Q) =IR and f is topologically mixing in the whole plane. Key words: pseudo-Anosov maps, Pesin theory, periodic disks e-mail: [email protected] 2010 Mathematics Subject Classification: 37E30, 37E45, 37C25, 37C29, 37D25 The author is partially supported by CNPq, grant: 304803/06-5 1 Introduction and main results One of the most well understood chapters of dynamics of surface homeomor- phisms is the case of the torus.
    [Show full text]
  • Roots of Crosscap Slides and Crosscap Transpositions
    Period Math Hung DOI 10.1007/s10998-017-0210-3 Roots of crosscap slides and crosscap transpositions Anna Parlak1 · Michał Stukow1 © The Author(s) 2017. This article is an open access publication Abstract Let Ng denote a closed nonorientable surface of genus g.Forg ≥ 2 the mapping class group M(Ng) is generated by Dehn twists and one crosscap slide (Y -homeomorphism) or by Dehn twists and a crosscap transposition. Margalit and Schleimer observed that Dehn twists on orientable surfaces have nontrivial roots. We give necessary and sufficient conditions for the existence of roots of crosscap slides and crosscap transpositions. Keywords Mapping class group · Nonorientable surface · Punctured sphere · Elementary braid · Crosscap slide · Crosscap transposition Mathematics Subject Classification 57N05 · 20F38 · 57M99 1 Introduction n Let Ng,s be a connected nonorientable surface of genus g with s boundary components and n punctures, that is a surface obtained from a connected sum of g projective planes Ng by removing s open disks and specifying the set ={p1,...,pn} of n distinguished points in the interior of Ng.Ifs or/and n equals zero, we omit it from notation. The mapping class M( n ) : n → n group Ng,s consists of isotopy classes of self-homeomorphisms h Ng,s Ng,s fixing () = M( n ) boundary components pointwise and such that h . The mapping class group Sg,s of an orientable surface is defined analogously, but we consider only orientation-preserving Both authors are supported by Grant 2015/17/B/ST1/03235 of National Science Centre, Poland. B Michał Stukow [email protected] Anna Parlak [email protected] 1 Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gda´nsk, 80-308 Gda´nsk, Poland 123 A.
    [Show full text]
  • Lecture Notes C Sarah Rasmussen, 2019
    Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Introduction to knots and embeddings 13 Lecture 3: Link diagrams and Alexander polynomial skein relations 17 Lecture 4: Handle decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Morse functions from handle decompositions 24 Lecture 6: Handle-bodies and Heegaard diagrams 28 Lecture 7: Fundamental group presentations from Heegaard diagrams 36 Lecture 8: Alexander polynomials from fundamental groups 39 Lecture 9: Fox calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston classification for mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn surgery 64 Lecture 15: 3-manifolds from Dehn surgery 68 Lecture 16: Seifert fibered spaces 72 Lecture 17: Hyperbolic manifolds 76 Lecture 18: Embedded surface representatives 80 Lecture 19: Incompressible and essential surfaces 83 Lecture 20: Connected sum 86 Lecture 21: JSJ decomposition and geometrization 89 Lecture 22: Turaev torsion and knot decompositions 92 Lecture 23: Foliations 96 Lecture 24. Taut Foliations 98 Errata: Catalogue of errors/changes/addenda 102 References 106 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y . ◦ ν(X) { the interior of ν(X). This notation is somewhat redundant, but emphasises openness.
    [Show full text]
  • Math.GT] 11 Aug 1998 Nec Once Opnn of Component Connected Each on Hr Xsssc an Such Exists There Has Let Ubro Udul Onsi O 2
    QUADRUPLE POINTS OF REGULAR HOMOTOPIES OF SURFACES IN 3-MANIFOLDS TAHL NOWIK 1. Introduction Definition 1.1. Let F be a (finite) system of closed surfaces and M a 3-manifold. A regular homotopy Ht : F → M, t ∈ [0, 1] will be called closed if H0 = H1. We will denote a closed generic regular homotopy by CGRH. The number mod 2 of quadruple points of a generic regular homotopy Ht will be denoted by q(Ht) (∈ Z/2.) Max and Banchoff in [MB] proved that any generic regular homotopy of S2 in R3 which “turns S2 inside out,” has an odd number of quadruple points. The main point was showing that any CGRH of S2 in R3 has an even number of quadruple points. Goryunov in [G] expresses this from the Vassiliev Invariants point of view, as follows: Let Imm(S2, R3) be the space of all immersions of S2 in R3, and let ∆ ⊆ Imm(S2, R3) be the subspace of all non-generic immersions. Choose some 2 3 2 3 generic immersion f0 : S → R as a base immersion. For any generic immersion f : S → R let Q(f) ∈ Z/2 be defined as q(Ht) where Ht is some generic regular homotopy between f0 and f. 2 3 There exists such an Ht since Imm(S , R ) is connected, and this is well defined since any CGRH has q = 0. Furthermore, since generic immersions do not have quadruple points, Q will be constant on each connected component of Imm(S2, R3) − ∆. [G] then raises the question whether such a Q may be defined for any surface in R3, that is, whether for any CGRH of any surface in R3 the number of quadruple points is 0 mod 2.
    [Show full text]
  • Arxiv:1706.08798V1 [Math.GT] 27 Jun 2017
    WHAT'S WRONG WITH THE GROWTH OF SIMPLE CLOSED GEODESICS ON NONORIENTABLE HYPERBOLIC SURFACES Matthieu Gendulphe Dipartimento di Matematica Universit`adi Pisa Abstract. A celebrated result of Mirzakhani states that, if (S; m) is a finite area orientable hyperbolic surface, then the number of simple closed geodesics of length less than L on (S; m) is asymptotically equivalent to a positive constant times Ldim ML(S), where ML(S) denotes the space of measured laminations on S. We observed on some explicit examples that this result does not hold for nonorientable hyperbolic surfaces. The aim of this article is to explain this surprising phenomenon. Let (S; m) be a finite area nonorientable hyperbolic surface. We show that the set of measured laminations with a closed one{sided leaf has a peculiar structure. As a consequence, the action of the mapping class group on the projective space of measured laminations is not minimal. We determine a partial classification of its orbit closures, and we deduce that the number of simple closed geodesics of length less than L on (S; m) is negligible compared to Ldim ML(S). We extend this result to general multicurves. Then we focus on the geometry of the moduli space. We prove that its Teichm¨ullervolume is infinite, and that the Teichm¨ullerflow is not ergodic. We also consider a volume form introduced by Norbury. We show that it is the right generalization of the Weil{Petersson volume form. The volume of the moduli space with respect to this volume form is again infinite (as shown by Norbury), but the subset of hyperbolic surfaces whose one{sided geodesics have length at least " > 0 has finite volume.
    [Show full text]