Lecture Notes C Sarah Rasmussen, 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topics in Geometric Group Theory. Part I
Topics in Geometric Group Theory. Part I Daniele Ettore Otera∗ and Valentin Po´enaru† April 17, 2018 Abstract This survey paper concerns mainly with some asymptotic topological properties of finitely presented discrete groups: quasi-simple filtration (qsf), geometric simple connec- tivity (gsc), topological inverse-representations, and the notion of easy groups. As we will explain, these properties are central in the theory of discrete groups seen from a topo- logical viewpoint at infinity. Also, we shall outline the main steps of the achievements obtained in the last years around the very general question whether or not all finitely presented groups satisfy these conditions. Keywords: Geometric simple connectivity (gsc), quasi-simple filtration (qsf), inverse- representations, finitely presented groups, universal covers, singularities, Whitehead manifold, handlebody decomposition, almost-convex groups, combings, easy groups. MSC Subject: 57M05; 57M10; 57N35; 57R65; 57S25; 20F65; 20F69. Contents 1 Introduction 2 1.1 Acknowledgments................................... 2 arXiv:1804.05216v1 [math.GT] 14 Apr 2018 2 Topology at infinity, universal covers and discrete groups 2 2.1 The Φ/Ψ-theoryandzippings ............................ 3 2.2 Geometric simple connectivity . 4 2.3 TheWhiteheadmanifold............................... 6 2.4 Dehn-exhaustibility and the QSF property . .... 8 2.5 OnDehn’slemma................................... 10 2.6 Presentations and REPRESENTATIONS of groups . ..... 13 2.7 Good-presentations of finitely presented groups . ........ 16 2.8 Somehistoricalremarks .............................. 17 2.9 Universalcovers................................... 18 2.10 EasyREPRESENTATIONS . 21 ∗Vilnius University, Institute of Data Science and Digital Technologies, Akademijos st. 4, LT-08663, Vilnius, Lithuania. e-mail: [email protected] - [email protected] †Professor Emeritus at Universit´eParis-Sud 11, D´epartement de Math´ematiques, Bˆatiment 425, 91405 Orsay, France. -
Part III 3-Manifolds Lecture Notes C Sarah Rasmussen, 2019
Part III 3-manifolds Lecture Notes c Sarah Rasmussen, 2019 Contents Lecture 0 (not lectured): Preliminaries2 Lecture 1: Why not ≥ 5?9 Lecture 2: Why 3-manifolds? + Intro to Knots and Embeddings 13 Lecture 3: Link Diagrams and Alexander Polynomial Skein Relations 17 Lecture 4: Handle Decompositions from Morse critical points 20 Lecture 5: Handles as Cells; Handle-bodies and Heegard splittings 24 Lecture 6: Handle-bodies and Heegaard Diagrams 28 Lecture 7: Fundamental group presentations from handles and Heegaard Diagrams 36 Lecture 8: Alexander Polynomials from Fundamental Groups 39 Lecture 9: Fox Calculus 43 Lecture 10: Dehn presentations and Kauffman states 48 Lecture 11: Mapping tori and Mapping Class Groups 54 Lecture 12: Nielsen-Thurston Classification for Mapping class groups 58 Lecture 13: Dehn filling 61 Lecture 14: Dehn Surgery 64 Lecture 15: 3-manifolds from Dehn Surgery 68 Lecture 16: Seifert fibered spaces 69 Lecture 17: Hyperbolic 3-manifolds and Mostow Rigidity 70 Lecture 18: Dehn's Lemma and Essential/Incompressible Surfaces 71 Lecture 19: Sphere Decompositions and Knot Connected Sum 74 Lecture 20: JSJ Decomposition, Geometrization, Splice Maps, and Satellites 78 Lecture 21: Turaev torsion and Alexander polynomial of unions 81 Lecture 22: Foliations 84 Lecture 23: The Thurston Norm 88 Lecture 24: Taut foliations on Seifert fibered spaces 89 References 92 1 2 Lecture 0 (not lectured): Preliminaries 0. Notation and conventions. Notation. @X { (the manifold given by) the boundary of X, for X a manifold with boundary. th @iX { the i connected component of @X. ν(X) { a tubular (or collared) neighborhood of X in Y , for an embedding X ⊂ Y . -
Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local
Daniel Irvine June 20, 2014 Lecture 6: Topological Manifolds 1. Local Topological Properties Exercise 7 of the problem set asked you to understand the notion of path compo- nents. We assume that knowledge here. We have done a little work in understanding the notions of connectedness, path connectedness, and compactness. It turns out that even if a space doesn't have these properties globally, they might still hold locally. Definition. A space X is locally path connected at x if for every neighborhood U of x, there is a path connected neighborhood V of x contained in U. If X is locally path connected at all of its points, then it is said to be locally path connected. Lemma 1.1. A space X is locally path connected if and only if for every open set V of X, each path component of V is open in X. Proof. Suppose that X is locally path connected. Let V be an open set in X; let C be a path component of V . If x is a point of V , we can (by definition) choose a path connected neighborhood W of x such that W ⊂ V . Since W is path connected, it must lie entirely within the path component C. Therefore C is open. Conversely, suppose that the path components of open sets of X are themselves open. Given a point x of X and a neighborhood V of x, let C be the path component of V containing x. Now C is path connected, and since it is open in X by hypothesis, we now have that X is locally path connected at x. -
DIFFERENTIAL GEOMETRY COURSE NOTES 1.1. Review of Topology. Definition 1.1. a Topological Space Is a Pair (X,T ) Consisting of A
DIFFERENTIAL GEOMETRY COURSE NOTES KO HONDA 1. REVIEW OF TOPOLOGY AND LINEAR ALGEBRA 1.1. Review of topology. Definition 1.1. A topological space is a pair (X; T ) consisting of a set X and a collection T = fUαg of subsets of X, satisfying the following: (1) ;;X 2 T , (2) if Uα;Uβ 2 T , then Uα \ Uβ 2 T , (3) if Uα 2 T for all α 2 I, then [α2I Uα 2 T . (Here I is an indexing set, and is not necessarily finite.) T is called a topology for X and Uα 2 T is called an open set of X. n Example 1: R = R × R × · · · × R (n times) = f(x1; : : : ; xn) j xi 2 R; i = 1; : : : ; ng, called real n-dimensional space. How to define a topology T on Rn? We would at least like to include open balls of radius r about y 2 Rn: n Br(y) = fx 2 R j jx − yj < rg; where p 2 2 jx − yj = (x1 − y1) + ··· + (xn − yn) : n n Question: Is T0 = fBr(y) j y 2 R ; r 2 (0; 1)g a valid topology for R ? n No, so you must add more open sets to T0 to get a valid topology for R . T = fU j 8y 2 U; 9Br(y) ⊂ Ug: Example 2A: S1 = f(x; y) 2 R2 j x2 + y2 = 1g. A reasonable topology on S1 is the topology induced by the inclusion S1 ⊂ R2. Definition 1.2. Let (X; T ) be a topological space and let f : Y ! X. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
LECTURE 1. Differentiable Manifolds, Differentiable Maps
LECTURE 1. Differentiable manifolds, differentiable maps Def: topological m-manifold. Locally euclidean, Hausdorff, second-countable space. At each point we have a local chart. (U; h), where h : U ! Rm is a topological embedding (homeomorphism onto its image) and h(U) is open in Rm. Def: differentiable structure. An atlas of class Cr (r ≥ 1 or r = 1 ) for a topological m-manifold M is a collection U of local charts (U; h) satisfying: (i) The domains U of the charts in U define an open cover of M; (ii) If two domains of charts (U; h); (V; k) in U overlap (U \V 6= ;) , then the transition map: k ◦ h−1 : h(U \ V ) ! k(U \ V ) is a Cr diffeomorphism of open sets in Rm. (iii) The atlas U is maximal for property (ii). Def: differentiable map between differentiable manifolds. f : M m ! N n (continuous) is differentiable at p if for any local charts (U; h); (V; k) at p, resp. f(p) with f(U) ⊂ V the map k ◦ f ◦ h−1 = F : h(U) ! k(V ) is m differentiable at x0 = h(p) (as a map from an open subset of R to an open subset of Rn.) f : M ! N (continuous) is of class Cr if for any charts (U; h); (V; k) on M resp. N with f(U) ⊂ V , the composition k ◦ f ◦ h−1 : h(U) ! k(V ) is of class Cr (between open subsets of Rm, resp. Rn.) f : M ! N of class Cr is an immersion if, for any local charts (U; h); (V; k) as above (for M, resp. -
Differentiable Mappings in the Schoenflies Theorem
COMPOSITIO MATHEMATICA MARSTON MORSE Differentiable mappings in the Schoenflies theorem Compositio Mathematica, tome 14 (1959-1960), p. 83-151 <http://www.numdam.org/item?id=CM_1959-1960__14__83_0> © Foundation Compositio Mathematica, 1959-1960, tous droits réser- vés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Differentiable mappings in the Schoenflies theorem Marston Morse The Institute for Advanced Study Princeton, New Jersey § 0. Introduction The recent remarkable contributions of Mazur of Princeton University to the topological theory of the Schoenflies Theorem lead naturally to questions of fundamental importance in the theory of differentiable mappings. In particular, if the hypothesis of the Schoenflies Theorem is stated in terms of regular differen- tiable mappings, can the conclusion be stated in terms of regular differentiable mappings of the same class? This paper gives an answer to this question. Further reference to Mazur’s method will be made later when the appropriate technical language is available. Ref. 1. An abstract r-manifold 03A3r, r > 1, of class Cm is understood in thé usual sense except that we do not require that Er be connected. Refs. 2 and 3. For the sake of notation we shall review the defini- tion of Er and of the determination of a Cm-structure on Er’ m > 0. -
Maximal Atlases and Holomorphic Maps of Riemann Surfaces
Supplementary Notes, Exercises and Suggested Reading for Lecture 3: Maximal Atlases and Holomorphic Maps of Riemann Surfaces An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves by Dr. T. E. Venkata Balaji August 16, 2012 An Introduction to Riemann Surfaces and Algebraic Curves: Complex 1-Tori and Elliptic Curves by Dr. T. E. Venkata Balaji Supplementary Notes, Exercises and Suggested Reading for Lecture 3:Maximal Atlases and Holomorphic Maps of Riemann Surfaces 1 Some Defintions and Results from Topology. Read up the following topics from a standard textbook on Topology. You may consult for example the book by John L. Kelley titled General Topology and the book by George F. Simmons titled An Introduction to Topology and Modern Analysis. a) Regular and Normal Spaces. Recall that a topological space is called Hausdorff if any two distinct points can be separated by disjoint open neighborhoods. Hausdorffness is also denoted by T2 and is stronger than T1 for which every point is a closed subset. A topological space is called regular if given a point and a closed subset not containing that point, there are open disjoint subsets, one containing the given point and the other the closed subset. In other words, a point and a closed subset not containing that point can be separated by disjoint open neighborhoods. A topological space is called T3 if it is T1 and regular. A topological space is called normal if any two disjoint closed subsets can be separated by disjoint open neighborhoods. A topological space is called T4 if it is T1 and normal. -
Max Dehn: His Life, Work, and Influence
Mathematisches Forschungsinstitut Oberwolfach Report No. 59/2016 DOI: 10.4171/OWR/2016/59 Mini-Workshop: Max Dehn: his Life, Work, and Influence Organised by David Peifer, Asheville Volker Remmert, Wuppertal David E. Rowe, Mainz Marjorie Senechal, Northampton 18 December – 23 December 2016 Abstract. This mini-workshop is part of a long-term project that aims to produce a book documenting Max Dehn’s singular life and career. The meet- ing brought together scholars with various kinds of expertise, several of whom gave talks on topics for this book. During the week a number of new ideas were discussed and a plan developed for organizing the work. A proposal for the volume is now in preparation and will be submitted to one or more publishers during the summer of 2017. Mathematics Subject Classification (2010): 01A55, 01A60, 01A70. Introduction by the Organisers This mini-workshop on Max Dehn was a multi-disciplinary event that brought together mathematicians and cultural historians to plan a book documenting Max Dehn’s singular life and career. This long-term project requires the expertise and insights of a broad array of authors. The four organisers planned the mini- workshop during a one-week RIP meeting at MFO the year before. Max Dehn’s name is known to mathematicians today mostly as an adjective (Dehn surgery, Dehn invariants, etc). Beyond that he is also remembered as the first mathematician to solve one of Hilbert’s famous problems (the third) as well as for pioneering work in the new field of combinatorial topology. A number of Dehn’s contributions to foundations of geometry and topology were discussed at the meeting, partly drawing on drafts of chapters contributed by John Stillwell and Stefan M¨uller-Stach, who unfortunately were unable to attend. -
Suppose N Is a Topological Manifold with Smooth Structure U. Suppose M Is a Topological Manifold and F Is a Homeomorphism M → N
Suppose n is a topological manifold with smooth structure U. Suppose M is a topological manifold and F is a homeomorphism M → N. We can use F to “pull back” the smooth structure U from N to M as follows: for each chart (U, φ) in U we have a chart (F −1(U), φ◦F ) on M. These charts form a maximal smooth atlas F ∗(U) for M, that is a smooth structure on M. Almost by definition, the map F : M → N is a diffeomorphism from (M, F ∗(U)) to (N, U). Now consider the case M = N. If F is the identity map, then F ∗(U) = U. More generally, this is true any time F is a diffeormorphism with respect to the smooth structure U (that is, a diffeomorphism from the smooth manifold (M, U) to itself). But suppose F is a homeomorphism which is not a diffeomorphism. Then (N, F ∗(U)) = (M, F ∗(U)) is a distinct differentible structure on the same differentiable manifold M. For ∗ instance, a real-valued function g : M → R is smooth w.r.t. U iff g ◦ F is smooth w.r.t. F (U). But, as mentioned above, the map F is a diffeomorphism as a map (M, F ∗(U)) → (M, U). In particular, the two smooth manifolds are really the same (the are diffeomorphic to each other). Thus, this simple construction never produces “exotic” smooth structures (two different smooth manifolds with the same underlying topological manifold). Facts: (1) Up to diffeomorphism, there is a unique smooth structure on any topological manifold n n M in dimension n ≤ 3. -
Lectures on the Mapping Class Group of a Surface
LECTURES ON THE MAPPING CLASS GROUP OF A SURFACE THOMAS KWOK-KEUNG AU, FENG LUO, AND TIAN YANG Abstract. In these lectures, we give the proofs of two basic theorems on surface topology, namely, the work of Dehn and Lickorish on generating the mapping class group of a surface by Dehn-twists; and the work of Dehn and Nielsen on relating self-homeomorphisms of a surface and automorphisms of the fundamental group of the surface. Some of the basic materials on hyper- bolic geometry and large scale geometry are introduced. Contents Introduction 1 1. Mapping Class Group 2 2. Dehn-Lickorish Theorem 13 3. Hyperbolic Plane and Hyperbolic Surfaces 22 3.1. A Crash Introduction to the Hyperbolic Plane 22 3.2. Hyperbolic Geometry on Surfaces 29 4. Quasi-Isometry and Large Scale Geometry 36 5. Dehn-Nielsen Theorem 44 5.1. Injectivity of ª 45 5.2. Surjectivity of ª 46 References 52 2010 Mathematics Subject Classi¯cation. Primary: 57N05; Secondary: 57M60, 57S05. Key words and phrases. Mapping class group, Dehn-Lickorish, Dehn-Nielsen. i ii LECTURES ON MAPPING CLASS GROUPS 1 Introduction The purpose of this paper is to give a quick introduction to the mapping class group of a surface. We will prove two main theorems in the theory, namely, the theorem of Dehn-Lickorish that the mapping class group is generated by Dehn twists and the theorem of Dehn-Nielsen that the mapping class group is equal to the outer-automorphism group of the fundamental group. We will present a proof of Dehn-Nielsen realization theorem following the argument of B. -
Scientific Workplace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra
Scientific WorkPlace· • Mathematical Word Processing • LATEX Typesetting Scientific Word· • Computer Algebra (-l +lr,:znt:,-1 + 2r) ,..,_' '"""""Ke~r~UrN- r o~ r PooiliorK 1.931'J1 Po6'lf ·1.:1l26!.1 Pod:iDnZ 3.881()2 UfW'IICI(JI)( -2.801~ ""'"""U!NecteoZ l!l!iS'11 v~ 0.7815399 Animated plots ln spherical coordln1tes > To make an anlm.ted plot In spherical coordinates 1. Type an expression In thr.. variables . 2 WMh the Insertion poilt In the expression, choose Plot 3D The next exampfe shows a sphere that grows ftom radius 1 to .. Plot 3D Animated + Spherical The Gold Standard for Mathematical Publishing Scientific WorkPlace and Scientific Word Version 5.5 make writing, sharing, and doing mathematics easier. You compose and edit your documents directly on the screen, without having to think in a programming language. A click of a button allows you to typeset your documents in LAT£X. You choose to print with or without LATEX typesetting, or publish on the web. Scientific WorkPlace and Scientific Word enable both professionals and support staff to produce stunning books and articles. Also, the integrated computer algebra system in Scientific WorkPlace enables you to solve and plot equations, animate 20 and 30 plots, rotate, move, and fly through 3D plots, create 3D implicit plots, and more. MuPAD' Pro MuPAD Pro is an integrated and open mathematical problem solving environment for symbolic and numeric computing. Visit our website for details. cK.ichan SOFTWARE , I NC. Visit our website for free trial versions of all our products. www.mackichan.com/notices • Email: info@mac kichan.com • Toll free: 877-724-9673 It@\ A I M S \W ELEGRONIC EDITORIAL BOARD http://www.math.psu.edu/era/ Managing Editors: This electronic-only journal publishes research announcements (up to about 10 Keith Burns journal pages) of significant advances in all branches of mathematics.