CONFERENCE MARCH 15–18 PORTLAND, OR, USA Portland Marriott Downtown Waterfront

Total Page:16

File Type:pdf, Size:1020Kb

CONFERENCE MARCH 15–18 PORTLAND, OR, USA Portland Marriott Downtown Waterfront 93RD ANNUAL INTERNATIONAL 2020 CONFERENCE MARCH 15–18 PORTLAND, OR, USA Portland Marriott Downtown Waterfront S P CI I EN H C S E N E E D Z U I C T A I T C I O · N A Y C T R I O N S S U P M L A M C E O S C A · N D L C O O N O T H E X C T S S 3/15/20 Concurrent Session 1 2:40 PM-4:10 PM Equity and Ethics Committee Admin Symposium-Addressing Issues of Equity and Justice across Places and Context in Science 2:40 PM-4:10 PM, Mt Hood Organizers Catherine Quinlan, Howard University Ying-Ting Chiu, The Ohio State University María González-Howard, University of Texas at Austin Stephanie Eldridge, University of Georgia James M. Nyachwaya, North Dakota State University Presenters Christopher Atchison SaMi Kahn, Princeton University Shari Watkins Brittany Garvin-Hudson ABSTRACT This equity and ethics syMposium extends the Meaning of accessibility across places and contexts for those Marginalized because of gender, ethnicity, Race, Medical, economics, and disabilities. This Means pushing the Margins and boundaries in science to understand what it takes to do science in a wheel chair or what it Means to include all the voices of people who have contributed to science. The audience will come away inspired with new understandings and atypical iMages about where science can happen. This syMposiuM will encourage the audience to think beyond whose science counts and has been privileged. Panel presentations will be followed by interactive discussions and presentations with practical iMpleMentation of culturally responsive pedagogy. Topics have iMplications for what it Means to break stereotypes rather than react to disabilities and differences. Issues of equity, social, cultural, historical, and political iMplications for science learning and practices in higher education and K-12 settings are iMplicated. Strand 1: Science Learning, Understanding and Conceptual Change Learning and Teaching Evolution in High School: Challenges and Possible Remedies 2:40 PM-4:10 PM, SalMon Discussant: Kostas KaMpourakis, University Of Geneva Presider: Anat Yarden, Weizmann Institute Of Science High School Students' Types of Teleological Explanations: Implications for Item Development and for Teaching-Learning Strategies Janina Jördens, Münster University Marcus Hammann, Münster University 1 Experiencing the Development of Antibiotics Resistant Bacteria: Students' Understanding of the Nature of Evolution Bat-Shahar Dorfman, Weizmann Institute of Science Orna Dahan, Weizmann Institute of Science Amir Mitchell, University of Massachusetts Medical School Anat Yarden, Weizmann Institute Of Science Plant Blindness – What German High School Students and In-Service Biology Teachers Daniela Fiedler, IPN - Leibniz Institute for Science and MatheMatics Education, Kiel, Germany Isabell Rösberg, IPN - Leibniz Institute for Science and MatheMatics Education, Kiel, Germany Marc Rodemer, IPN – Leibniz Institute for Science and MatheMatics Education, Kiel, GerMany Birgit Heyduck, IPN – Leibniz Institute for Science and MatheMatics Education, Kiel, GerMany Ute Harms, Leibniz Institute for Science and MatheMatics Education (IPN) Capturing Instructional Strategies of Pre-Service Biology Teachers to Counter Misconceptions about Evolution by the SCRBio Julian Fischer, Leibniz Institute for Science and MatheMatics Education Nils Machts, Department of Educational Psychology (IPL), Kiel University Jens Möller, Department of Educational Psychology (IPL), Kiel University Ute Harms, Leibniz Institute for Science and MatheMatics Education (IPN) Kostas KaMpourakis, University Of Geneva ABSTRACT Every citizen should understand the iMportance of evolution-related subjects that relate to everyday life. Indeed, evolution has been recomMended to be integrated throughout the undergraduate biology curriculum, into K-12 science education in the US, and in the curricula of other countries. Nevertheless, numerus Misconceptions about evolution were identified among different populations, from Middle- school students to college undergraduates and pre-service teachers. In this related-paper-set four leading scholars in the evolution education field will be focusing on the current state-of-the-art of the learning and teaching of evolution in senior high school. From the characterization of high school students’ types of teleological explanations, to advancing students’ understanding using a novel instructional strategy that enabled to experience bacterial evolution in a test tube, to illuminating new insights into the role of plants in the teaching and learning of evolution, and finally into a novel digital instruMent that enables to assess diagnostic knowledge about evolution aMong pre-service teachers. Taken together, this session will on the one hand bring insights into promoting our understanding of students’ and teachers’ comprehension difficulties and Means to probe theM, and on the other hand novel instructional strategies that atteMpt to promote the understanding of evolution in high school. Strand 2: Science Learning: Contexts, Characteristics and Interactions Language & Learning Science 2:40 PM-4:10 PM, Hawthorne/BelMont/Laurelhurst Presider: Katherine Carr ChapMan, Vanderbilt University Hispanic Student Perceptions toward Spanish, Learning Science, and Attitudes Angela ChapMan, University Of Texas Rio Grande Valley Anthony Bailey, University Of Texas Rio Grande Valley 2 Amy WeiMer, Texas State University Shania Pintor, University Of Texas Rio Grande Valley Stephany Pinales, University Of Texas Rio Grande Valley ABSTRACT Learning science vocabulary is a challenge for educators and all students. This is especially true for students whose first language is not English. This study investigated student perceptions toward science, Spanish, and learning for Hispanic high school students. We report that students have a More positive attitude toward science than they do toward the role of Spanish and science. In addition, instruction that explicitly connects Spanish to learning has a positive effect on their attitude toward the role of Spanish in learning science. Languages of Modeling, Modeling in Languages: Integrating Science and Translanguaging Ashlyn Pierson, Vanderbilt University Douglas B. Clark, University of Calgary Corey E. Brady, Vanderbilt University ABSTRACT This design-based study adopts a syncretic approach to leverage parallels between eMerging bilingual students’ everyday translanguaging practices and scientific Modeling practices to address goals related to equity and disciplinary learning. The design is grounded in two principles: (1) valuing and promoting modeling-in-languages, including English, Spanish, and invented language, and (2) creating opportunities for students to recognize and analyze the multiModal languages-of-modeling. We find that these principles support eMerging bilingual and Monolingual students’ engageMent in negotiated and purpose-driven scientific discourse. The Effects of Language and Other Home factors on Lebanese Students' Performance in TIMSS Rayya Younes, University of Balamand Sara Salloum, University of Balamand Maya Antoun, University of Balamand ABSTRACT The aiM of this study is to describe and explore language and other home factors affecting the performance of Lebanese students in TIMSS. In Lebanon, Science and MatheMatics are taught in a foreign language based on a language-in-education or Language of Learning and Teaching policy (LoLT) that dates back to 1926. It is suggested that LoLT policies May create ‘linguistically structured inequalities’ or linguistic discriMination, where poor proficiency in the international language results in poor achieveMent of learners. Exploring TIMSS data can help us locate areas and groups of students that need More support to counter such inequalities. Using the TIMSS data and hierarchical linear Modelling (HLM), we exaMined the perforMance of students in MatheMatics and Science depending the language of the test, how frequently they spoke it at home, and other home factors: parents’ education level, number of books owned, and parents’ involveMent. Results show that the effect of the frequency of the spoken language at home on the students’ performance is affected by the language of the test. Moreover, there is a direct relationship between the parents’ education level and the students’ performance. We discuss these findings utilizing Bourdieu’s notion of cultural capital. 3 Strand 2: Science Learning: Contexts, Characteristics and Interactions The Chemistry Learning Environment 2:40 PM-4:10 PM, Meadow Lark/Douglas Fir - 3rd floor Presider: Jonathon Grooms, George Washington University Why do students choose a context? Students' reasons for choosing a learning task in chemistry Helena Van Vorst, University of Cologne Hatice Aydogmus ABSTRACT Context-based learning has gained an increasing influence in science education over the last 30 years. However, it is still unclear which types of contexts foster students’ interests and learning achieveMent and hence, are appropriate for science classes. While contexts are usually selected by the teachers or curriculum developers, this study focusses on students’ perspective. The central aiM of this research project is to analyze which contexts students choose for their science learning and what are the reasons for their choice. Therefore, a questionnaire study has been conducted. The data analysis illustrates significant differences in the selected contexts depending on students’ individual variables like sex or individual interest in the subject. Additionally, a cluster
Recommended publications
  • Geoscience and a Lunar Base
    " t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Regional Oral History Off Ice University of California the Bancroft Library Berkeley, California
    Regional Oral History Off ice University of California The Bancroft Library Berkeley, California Richard B. Gump COMPOSER, ARTIST, AND PRESIDENT OF GUMP'S, SAN FRANCISCO An Interview Conducted by Suzanne B. Riess in 1987 Copyright @ 1989 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West,and the Nation. Oral history is a modern research technique involving an interviewee and an informed interviewer in spontaneous conversation. The taped record is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The resulting manuscript is typed in final form, indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. All uses of this manuscript are covered by a legal agreement between the University of California and Richard B. Gump dated 7 March 1988. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley. No part of the manuscript may be quoted for publication without the written permission of the Director of The Bancroft Library of the University of California, Berkeley.
    [Show full text]
  • America the Beautiful Part 1
    America the Beautiful Part 1 Charlene Notgrass 1 America the Beautiful Part 1 by Charlene Notgrass ISBN 978-1-60999-141-8 Copyright © 2020 Notgrass Company. All rights reserved. All product names, brands, and other trademarks mentioned or pictured in this book are used for educational purposes only. No association with or endorsement by the owners of the trademarks is intended. Each trademark remains the property of its respective owner. Unless otherwise noted, scripture quotations are taken from the New American Standard Bible®, Copyright © 1960, 1962, 1963, 1971, 1972, 1973, 1975, 1977, 1995 by the Lockman Foundation. All rights reserved. Used by permission. Cover Images: Jordan Pond, Maine, background by Dave Ashworth / Shutterstock.com; Deer’s Hair by George Catlin / Smithsonian American Art Museum; Young Girl and Dog by Percy Moran / Smithsonian American Art Museum; William Lee from George Washington and William Lee by John Trumbull / Metropolitan Museum of Art. Back Cover Author Photo: Professional Portraits by Kevin Wimpy The image on the preceding page is of Denali in Denali National Park. No part of this material may be reproduced without permission from the publisher. You may not photocopy this book. If you need additional copies for children in your family or for students in your group or classroom, contact Notgrass History to order them. Printed in the United States of America. Notgrass History 975 Roaring River Rd. Gainesboro, TN 38562 1-800-211-8793 notgrass.com Thunder Rocks, Allegany State Park, New York Dear Student When God created the land we call America, He sculpted and painted a masterpiece.
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • Compositional and Mineralogical Characteristics of Archimedes Crater Region Using Chandrayaan – 1 M3 Data
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1040.pdf COMPOSITIONAL AND MINERALOGICAL CHARACTERISTICS OF ARCHIMEDES CRATER REGION USING CHANDRAYAAN – 1 M3 DATA. P. R. Kumaresan1 and J. Saravanavel2, 1Research Scholar, 2Assistant Professor, Department of Remote Sensing, Bharathidasan University, Tiruchirappalli-23, Tamil Nadu, India, email: [email protected], [email protected] Introduction: The Earth’s natural satellite the tometry corrected reflectance data captured during the moon is nearest celestial body appears brightest object OP1B optical period. in our night sky. Moon surfaces are composed of dark and light areas. The dark areas are called Maria which is made up of basaltic terrain and light areas are high- lands mostly made up of Anorthositic rocks. The moon surface is littered with craters, which are formed when meteors hit its surface. To understand the evolution, geological process of the moon it is important to study the surface composition and minerals present in crustal surface. In this regard, in our study, we have attempted to map the minerals and surface composition of Archi- medes crater region. Study area: Archimedes crater is a large impact crater located on the eastern edges of the Mare Imbri- um of near side moon (29.7° N, 4.0° W). The diameter of the crater is 83 km with smooth floor flooded (1) with mare basalt and lack of a central peak. The rim (2) has a significant outer rampart brightened with ejecta (3) and the some portion of a terraced inner wall. Ar- chimedes Crater is named for the Greek mathematician Archimedes, who made many mathematical discoveries in the 200 B.C [1, 2].
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • The Composition of the Lunar Crust: Radiative Transfer Modeling and Analysis of Lunar Visible and Near-Infrared Spectra
    THE COMPOSITION OF THE LUNAR CRUST: RADIATIVE TRANSFER MODELING AND ANALYSIS OF LUNAR VISIBLE AND NEAR-INFRARED SPECTRA A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOLOGY AND GEOPHYSICS DECEMBER 2009 By Joshua T.S. Cahill Dissertation Committee: Paul G. Lucey, Chairperson G. Jeffrey Taylor Patricia Fryer Jeffrey J. Gillis-Davis Trevor Sorensen Student: Joshua T.S. Cahill Student ID#: 1565-1460 Field: Geology and Geophysics Graduation date: December 2009 Title: The Composition of the Lunar Crust: Radiative Transfer Modeling and Analysis of Lunar Visible and Near-Infrared Spectra We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Geology and Geophysics. Dissertation Committee: Names Signatures Paul G. Lucey, Chairperson ____________________________ G. Jeffrey Taylor ____________________________ Jeffrey J. Gillis-Davis ____________________________ Patricia Fryer ____________________________ Trevor Sorensen ____________________________ ACKNOWLEDGEMENTS I must first express my love and appreciation to my family. Thank you to my wife Karen for providing love, support, and perspective. And to our little girl Maggie who only recently became part of our family and has already provided priceless memories in the form of beautiful smiles, belly laughs, and little bear hugs. The two of you provided me with the most meaningful reasons to push towards the "finish line". I would also like to thank my immediate and extended family. Many of them do not fully understand much about what I do, but support the endeavor acknowledging that if it is something I’m willing to put this much effort into, it must be worthwhile.
    [Show full text]
  • Tectonic Evolution of Northwestern Imbrium of the Moon That Lasted In
    Daket et al. Earth, Planets and Space (2016) 68:157 DOI 10.1186/s40623-016-0531-0 FULL PAPER Open Access Tectonic evolution of northwestern Imbrium of the Moon that lasted in the Copernican Period Yuko Daket1* , Atsushi Yamaji1, Katsushi Sato1, Junichi Haruyama2, Tomokatsu Morota3, Makiko Ohtake2 and Tsuneo Matsunaga4 Abstract The formation ages of tectonic structures and their spatial distributions were studied in the northwestern Imbrium and Sinus Iridum regions using images obtained by Terrain Camera and Multiband Imager on board the SELENE spacecraft and the images obtained by Narrow Angle Camera on board LRO. The formation ages of mare ridges are constrained by the depositional ages of mare basalts, which are either deformed or dammed by the ridges. For this purpose, we defined stratigraphic units and determined their depositional ages by crater counting. The degradation levels of craters dislocated by tectonic structures were also used to determine the youngest limits of the ages of the tectonic activities. As a result, it was found that the contractions to form mare ridges lasted long after the deposition of the majority of the mare basalts. There are mare ridges that were tectonically active even in the Copernican Period. Those young structures are inconsistent with the mascon tectonics hypothesis, which attributes tectonic deforma- tions to the subsidence of voluminous basaltic fills. The global cooling or the cooling of the Procellarum KREEP Ter- rane region seems to be responsible for them. In addition, we found a graben that was active after the Eratosthenian Period. It suggests that the global or regional cooling has a stress level low enough to allow the local extensional tectonics.
    [Show full text]
  • TARGET DATE Latitude Longitude ARCHIMEDES N. WALL 10/23
    TARGET DATE Latitude Longitude ARCHIMEDES N. WALL 10/23/1983 TYCHO SW WALL 10/23/1983 GRUIT CRATER NEAR DOMES 10/23/1983 BULLIALDUS CENTRAL PEAK 10/26/1983 CRATER NR. EICHSTADT 10/27/1983 ARISTARCHUS S. WALL 1 10/27/1983 HERODOTUS X 8/3/1980 23.2 ‐49.7 REINER K 8/3/1980 8.1 ‐53.9 REINER GAMMA TAIL 2 8/3/1980 7.8 ‐57.7 REINER GAMMA 8/3/1980 7.4 ‐58.8 BYRGIUS 7/25/1983 ‐24.7 ‐65.3 INGHIRAMI W BOWL 8/17/1981 ‐44.4 ‐67.3 TYCHO FLOOR 7/13/1981 TYCHO WALL 7/13/1981 TYCHO HALO 7/13/1981 COPERNICUS EJECTA 2 7/15/1981 COPERNICUS EJECTA 4 7/15/1981 APOLLO 14 8/2/1980 APOLLO 14 WEST CRATER 8/2/1980 PLATO RADAR 1 9/5/1982 ARISTARCHUS PLATEAU PEAK 1 9/6/1982 COBRA HEAD 10/22/1983 NE AGRICOLA MTS 2 10/22/1983 TYCHO SW FLOOR 10/23/1983 ARCHIMEDES N. WALL 1 10/23/1983 TYCHO SW WALL 10/23/1983 GRUIT CRATER NEAR DOMES 10/23/1983 BULLIALDUS CENTRAL PEAK 10/26/1983 CRATER NR. EICHSTADT 10/27/1983 ARISTARCHUS S. WALL 1 10/27/1983 ARISTARCHUS S. WALL 2 10/27/1983 Bright Spot, NR. S. RIM CREST 10/27/1983 ARISTARCHUS N. WALL 10/27/1983 S.LACUS AUTUMNI 10/28/1983 S. HIGHLAND REGION A 11/5/1976 COPERNICUS PEAK 1 11/24/1980 COPERNICUS WALL 1 11/24/1980 MS 2 7/13/1981 SOUTH SWIRL 8/3/1980 MARIUS HILLS 11/24/1980 ARCHIMEDES N.WALL#1 /SUN 10/23/83 AP.2 2.5 2.0 (j.) () c .....0 () (j.) .....
    [Show full text]
  • Get Smart with Art Is Made Possible with Support from the William K
    From the Headlines About the Artist From the Artist Based on the critics’ comments, what aspects of Albert Bierstadt (1830–1902) is Germany in 1830, Albert Bierstadt Bierstadt’s paintings defined his popularity? best known for capturing majestic moved to Massachusetts when he western landscapes with his was a year old. He demonstrated an paintings of awe-inspiring mountain early interest in art and at the age The striking merit of Bierstadt in his treatment of ranges, vast canyons, and tumbling of twenty-one had his first exhibit Yosemite, as of other western landscapes, lies in his waterfalls. The sheer physical at the New England Art Union in power of grasping distances, handling wide spaces, beauty of the newly explored West Boston. After spending several years truthfully massing huge objects, and realizing splendid is evident in his paintings. Born in studying in Germany at the German atmospheric effects. The success with which he does Art Academy in Düsseldorf, Bierstadt this, and so reproduces the noblest aspects of grand returned to the United States. ALBERT BIERSTADT scenery, filling the mind of the spectator with the very (1830–1902) sentiment of the original, is the proof of his genius. A great adventurer with a pioneering California Spring, 1875 Oil on canvas, 54¼ x 84¼ in. There are others who are more literal, who realize details spirit, Bierstadt joined Frederick W. Lander’s Military Expeditionary Presented to the City and County of more carefully, who paint figures and animals better, San Francisco by Gordon Blanding force, traveling west on the overland who finish more smoothly; but none except Church, and 1941.6 he in a different manner, is so happy as Bierstadt in the wagon route from Saint Joseph, Watkins Yosemite Art Gallery, San Francisco.
    [Show full text]