The National Plant Biosecurity Status Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
4Th National IPM Symposium
contents Foreword . 2 Program Schedule . 4 National Roadmap for Integrated Pest Management (IPM) . 9 Whole Systems Thinking Applied to IPM . 12 Fourth National IPM Symposium . 14 Poster Abstracts . 30 Poster Author Index . 92 1 foreword Welcome to the Fourth National Integrated Pest Management The Second National IPM Symposium followed the theme “IPM Symposium, “Building Alliances for the Future of IPM.” As IPM Programs for the 21st Century: Food Safety and Environmental adoption continues to increase, challenges facing the IPM systems’ Stewardship.” The meeting explored the future of IPM and its role approach to pest management also expand. The IPM community in reducing environmental problems; ensuring a safe, healthy, has responded to new challenges by developing appropriate plentiful food supply; and promoting a sustainable agriculture. The technologies to meet the changing needs of IPM stakeholders. meeting was organized with poster sessions and workshops covering 22 topic areas that provided numerous opportunities for Organization of the Fourth National Integrated Pest Management participants to share ideas across disciplines, agencies, and Symposium was initiated at the annual meeting of the National affiliations. More than 600 people attended the Second National IPM Committee, ESCOP/ECOP Pest Management Strategies IPM Symposium. Based on written and oral comments, the Subcommittee held in Washington, DC, in September 2001. With symposium was a very useful, stimulating, and exciting experi- the 2000 goal for IPM adoption having passed, it was agreed that ence. it was again time for the IPM community, in its broadest sense, to come together to review IPM achievements and to discuss visions The Third National IPM Symposium shared two themes, “Putting for how IPM could meet research, extension, and stakeholder Customers First” and “Assessing IPM Program Impacts.” These needs. -
Insert Report Title Here
Vegetable biosecurity & quarantine gap analysis Prue McMichael Scholefield Robinson Horticultural Services Pty Ltd Project Number: VG07087 VG07087 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 1849 X Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2008 FINAL REPORT Vegetable Biosecurity and Quarantine Gap Analysis VG07087 Prepared for : Horticulture Australia Ltd HAL Project No. VG07087 Prepared by : Prue McMichael Completion Date : September 2008 SCHOLEFIELD ROBINSON HORTICULTURAL SERVICES PTY LTD 118A Glen Osmond Road, Parkside SA 5063 Australia ACN 008 199 737 PO Box 650, Fullarton SA 5063 Ph: (08) 8373 2488 ABN 63 008 199 737 Fax: (08) 8373 2442 Email: [email protected] Web Site: www.srhs.com.au Offices in Adelaide and Mildura Scholefield Robinson Horticultural Services Pty Ltd HAL Project No. VG 07087 PROJECT LEADER Dr Prue McMichael Senior Consultant/Plant Pathologist Scholefield Robinson Horticultural Services Pty Ltd PO Box 650 Fullarton SA 5063 PURPOSE OF REPORT This Final Report has been prepared to document information acquired, analysed and considered during the review undertaken for HAL, into all aspects of the biosecurity of Australia’s vegetable industries that are members of AUSVEG. -
15 Foottit:15 Foottit
REDIA, XCII, 2009: 87-91 ROBERT G. FOOTTIT (*) - H. ERIC L. MAW (*) - KEITH S. PIKE (**) DNA BARCODES TO EXPLORE DIVERSITY IN APHIDS (HEMIPTERA APHIDIDAE AND ADELGIDAE) (*) Canadian National Collection of Insects, National Environmental Health Program, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada;[email protected] (**) Washington State University, Irrigated Agriculture Research and Extension Center, 24106 N. Bunn Road, Prosser, WA 99350, U.S.A Foottit R.G., Maw H.E.L., Pike K.S. – DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). A tendency towards loss of taxonomically useful characters, and morphological plasticity due to host and environmental factors, complicates the identification of aphid species and the analysis of relationships. The presence of different morphological forms of a single species on different hosts and at different times of the year makes it difficult to consistently associate routinely collected field samples with particular species definitions. DNA barcoding has been proposed as a standardized approach to the characterization of life forms. We have tested the effectiveness of the standard 658-bp barcode fragment from the 5’ end of the mitochondrial cytochrome c oxidase 1 gene (COI) to differentiate among species of aphids and adelgids. Results are presented for a preliminary study on the application of DNA barcoding in which approximately 3600 specimens representing 568 species and 169 genera of the major subfamilies of aphids and the adelgids have been sequenced. Examples are provided where DNA barcoding has been used as a tool in recognizing the existence of cryptic new taxa, linking life stages on different hosts of adelgids, and as an aid in the delineation of species boundaries. -
Molecular Basis of Pheromonogenesis Regulation in Moths
Chapter 8 Molecular Basis of Pheromonogenesis Regulation in Moths J. Joe Hull and Adrien Fónagy Abstract Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specifc, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecifc males as olfactory cues regarding female reproduc- tive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although signifcant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased avail- ability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of phero- mone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal trans- duction cascade that utilizes an infux of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specifc to each species. In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and con- clude by highlighting recent developments in the literature that disrupt/exploit this critical pathway. J. J. Hull (*) USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA e-mail: [email protected] A. -
Lepidoptera Learning Objective
QUARANTINE SIGNIFICANT LEPIDOPTERA OF CONCERN TO THE SOUTHERN UNITED STATES STEVEN PASSOA USDA/APHIS/PPQ 2007 1 LEPIDOPTERA GOALS . Learn techniques of specimen preparation and submission for CAPS Lepidoptera . Develop a list of Lepidoptera of regulatory concern to the southern USA . Learn to SCREEN samples for these species in the stage most likely to be seen by diagnostic labs using the MAJOR characters. Some species are only defined by a combination of features. In those cases, using the associated key and references listed is more accurate. Give examples from the major superfamilies . Distributions and hosts mentioned are the most likely pathways 2 DEVELOP A LIST . Criteria originally modified from biocontrol of weeds list in July 1991 memo, then modified by NEPSC committee . Now widely used in APHIS as mini-PRA . Survey methodology and taxonomic recognition added to economic criteria . Results are either threats (no pathway), CAPS targets (need to survey), or a dead survey (not practical to consider) 3 WHY LABS HATE TO IDENTIFY LEPIDOPTERA . Secret society of critical characters . Constant name changes . Characters hard to see, covered with scales, or both 4 EGGS . Two types . Do not kill important finds and sent urgent . Plan to rear them in a quarantine facility . Spodoptera and Lymantria (and others) cover the eggs with scales from the female’s body 5 LARVAE . Associate leaf miners with the mine and host . Mouthparts are the “genitalia” of the larval world . Fill vials so there is no air bubble when shipping . “Burp” rubber stoppers and parafilm screw top vials . Can kill and ship in vinegar . Put loose parts in small vials 6 PUPAE . -
JTI Volume 2 Issue 4 Back Matter
INSECT SCIENCE AN D ITS APPLICATION The International Journal of Tropical Insect Science Editor: Thomas R Odhiambo International Centre of Insect Physiology and Ecology (ICIPE) List of Contents, Author and Subject Index for Volume 2,1981 PERGAMON PRESS OXFORD • NEW YORK • TORONTO SYDNEY • PARIS • FRANKFURT Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.14, on 29 Sep 2021 at 15:28:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S174275840000103X Insect Science and its Application The International Journal of Tropical Insect Science Sponsored by the International Centre of Insect Physiology and Ecology (ICIPE) and the African Association of Insect Scientists (AAIS) Editor-in-Chief Thomas R. Odhiambo International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya Editorial Advisory Board F. T. Abu Shama, Khartoum, R. Levins, Boston, U.S.A. K. N. Saxena, Delhi, India Sudan M. Locke, Ontario, Canada H. Schmutterer, Giessen, P. L. Adkisson, Texas, U.S.A. F. G. Maxwell, Florida, U.S.A. F.R. Germany J. C. M. Carvalho, Rio de Janeiro, J. Meinwald, New York, U.S.A. L. M. Schoonhoven, Wageningen, Brazil P. L. Miller, Oxford, England The Netherlands R. Galun, Jerusalem, Israel J. Mouchet, Bondy, France J. E. Treherne, Cambridge, England T. Hidaka, Kyoto, Japan A. S. Msangi, Dar-es-Salaam, D. F. Waterhouse, Canberra, H. Hirumi, Nairobi, Kenya Tanzania Australia V. Landa, Prague, Czechoslovakia M. D. Pathak, Manila, A. Youdeowei, Ibadan, Nigeria The Philippines PUBLISHED QUARTERLY Publishing, Subscription and Advertising Offices: Headington Hill Hall, Oxford OX3 OBW, U.K. -
Products Against Shoot Fly, Atherigona Soccata
Journal of Entomology and Zoology Studies 2017; 5(3): 474-477 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(3): 474-477 Efficacy of some novel insecticides and bio- © 2017 JEZS products against shoot fly, Atherigona Soccata Received: 10-03-2017 Accepted: 11-04-2017 (Rondani) in maize Sudhir Kumar Department of Entomology, Sardar Vallabhbhi Patel Sudhir Kumar, DV Singh, Kantipudi Rajesh Kumar and Awaneesh University of Agriculture & Kumar Technology, Meerut, Uttar Pradesh, India Abstract DV Singh An investigation to study the efficacy of some novel insecticides and bio-products against shoot fly, Department of Entomology, Atherigona soccata (Rondani) in maize was carried out for two consecutive seasons i.e. 2013 and 2014, Sardar Vallabhbhi Patel at Crop Research Centre, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut. University of Agriculture & Efficacy of different insecticides and bio-products viz. Imidacloprid 70WS, Thiamethoxam 70WS, Technology, Meerut, Carbofuran 3G, Phorate 10G, NSKE, Cow urine-NSKE, Imidacloprid 70WS-NSKE and Thiamethoxam Uttar Pradesh, India 70WS-NSKE were evaluated against number of eggs of A. soccata revealed that the treatments, Imidacloprid 70WS-NSKE was found best to reduce the number of eggs laid by A. soccata i.e. 0.00 Kantipudi Rajesh Kumar Department of Entomology, eggs/plant (11 DAE) and 0.45 eggs/plant (22 DAE) followed by Thiamethoxam 70WS-NSKE with 0.45 Banaras Hindu University, eggs/plant (11 DAE) and 0.72 eggs/plant (22 DAE). However, the maximum number of eggs survival of Varanasi, Uttar Pradesh, India A. soccata was recorded with untreated control 1.85 eggs/plant (11 DAE) and 2.30 eggs/plant (22 DAE). -
3410-34-P DEPARTMENT of AGRICULTURE Animal and Plant
This document is scheduled to be published in the Federal Register on 08/04/2016 and available online at http://federalregister.gov/a/2016-18439, and on FDsys.gov BILLING CODE: 3410-34-P DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Part 319 [Docket No. APHIS-2016-0026] RIN 0579-AE25 Importation of Fresh Mango Fruit From Vietnam Into the Continental United States AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Proposed rule. SUMMARY: We are proposing to amend the regulations to allow the importation of fresh mango fruit from Vietnam into the continental United States. As a condition of entry, fresh mango fruit from Vietnam would be subject to a systems approach that would include orchard requirements, irradiation treatment, and port of entry inspection. The fruit would also be required to be imported in commercial consignments and accompanied by a phytosanitary certificate issued by the national plant protection organization of Vietnam with an additional declaration stating that the consignment was inspected and found free of Macrophoma mangiferae and Xanthomonas campestris pv. mangiferaeindicae. This action would allow for the importation of fresh mango fruit from Vietnam while continuing to provide protection against the introduction of plant pests into the continental United States. DATES: We will consider all comments that we receive on or before [Insert date 60 days after date of publication in the Federal Register]. ADDRESSES: You may submit comments by either of the following methods: Federal eRulemaking Portal: Go to http://www.regulations.gov/#!docketDetail;D=APHIS-2016-0026. Postal Mail/Commercial Delivery: Send your comment to Docket No. -
UNIVERSITY of CALIFORNIA, IRVINE the Effects of Climate Change and Biodiversity Loss on Mutualisms DISSERTATION Submitted In
UNIVERSITY OF CALIFORNIA, IRVINE The effects of climate change and biodiversity loss on mutualisms DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology and Evolutionary Biology by Annika S. Nelson Dissertation Committee: Professor Kailen A. Mooney, Chair Professor Diane R. Campbell Professor Matthew E.S. Bracken 2019 Chapters 1 and 2 © 2019 John Wiley and Sons All other materials © 2019 Annika S. Nelson DEDICATION To My parents, for fostering my love for science and the outdoors from a young age. ii TABLE OF CONTENTS Page LIST OF FIGURES iv ACKNOWLEDGMENTS v CURRICULUM VITAE vi ABSTRACT OF THE DISSERTATION viii INTRODUCTION 1 CHAPTER 1: Elevational cline in herbivore abundance driven by a monotonic increase 5 in trophic-level sensitivity to aridity APPENDIX 1A: Field site locations 30 APPENDIX 1B: Relationships between climatic variables across sites 32 APPENDIX 1C: Summary of statistical analyses 36 CHAPTER 2: Progressive sensitivity of trophic levels to warming underlies an 40 elevational gradient in ant-aphid mutualism strength APPENDIX 2A: Summary of variables measured and statistical analyses 67 APPENDIX 2B: Effects of mean summer temperature on the ant-aphid mutualism 71 APPENDIX 2C: Ant abundance, ant stable isotopes, and natural enemy abundance 75 CHAPTER 3: Sequential but not simultaneous mutualist diversity increases partner 77 fitness APPENDIX 3A: Summary of weather data during each census interval 100 APPENDIX 3B: Integral projection model structure and vital -
Comparative Biology of Shoot Fly, Atherigona Soccata (Rondani) On
Chemical Science Review and Letters ISSN 2278-6783 Research Article Comparative Biology of Shoot Fly, Atherigona Soccata (Rondani) on Susceptible, Resistant Genotypes and Its F1 Hybrid of Sorghum S. Sekar1*, S. Jeyarani2 and N. Kumaravadivel3 1Ph.d Scholar, Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India 2Professor, Agricultural Entomology, Directorate of Open Distance Learning, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India 3Professor and Head, Department of Molecular Breeding and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India Abstract Comparative biology of Atherigona soccata (Rondani) was studied on Keywords: Shoot fly, biology, susceptible (K8), resistant (IS 2205) sorghum genotypes and its F1 hybrid. IS 2205 (Resistant genotype), Significant differences were observed between resistant susceptible genotypes K8 (Susceptible genotype) and its F1 hybrid with regard to larval, pupal and adult developmental parameters. Developmental periods of egg, larva and pupa was maximum on *Correspondence IS 2205, F1 hybrid and minimum on K8. Total life cycle of shoot fly was Author: S. Sekar prolonged on resistant genotype, IS 2205 (24.98 ±1.87 days) and its F1 hybrid Email: [email protected] (22.04 ±1.67 days) than susceptible genotype, K 8 (20.1±105 days). Length and width of egg, larva, pupa and growth indices like pupation (%), adult emergence (%), fecundity (nos./ female) ovipositional period (days) and adult longevity (male and female) were minimum on IS 2205 indicating higher degree of antibiosis in the resistant genotype. Observation on female: male ratio showed no significant variation between IS2205, F1 hybrid and K 8. Introduction Sorghum is an important food and fodder crop in India. -
Downloaded from BOLD Or Requested from Other Authors
www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries. -
Impact of Ecological Factors on the Infestation of Mango Red Banded
Journal of Entomology and Zoology Studies 2014; 2 (4): 68-71 ISSN 2320-7078 Impact of ecological factors on the infestation of JEZS 2014; 2 (4): 68-71 © 2014 JEZS mango red banded caterpillar Received: 02-06-2014 Accepted: 02-07-2014 Mainak Bhattacharyya Mainak Bhattacharyya Former Researcher, Bidhan Chandra Krishi ABSTRACT Viswavidyalaya, Mohanpur, The study on the incidence pattern of mango red banded caterpillar (Autocharis albizonalis Hampson) was Nadia, West Bengal. carried out along with the different aspects of infestation and their varietal preference. The study concluded that the fruit borer infestation occurred from the pea to marble sized stage of the fruit and continued to maturity stage. The first pest brood was seen in the 1st fortnight of March and continued to June. Fifteen commercially grown mango cultivars were selected and cultivated under RBD. The Duncan Multiple Range test was subsequently performed to identify the differential level of varietal preference towards the pest. Himsagar, Arka Anmol, Prabha Sankhar and Amrapali were the most susceptible varieties and Neeluddin the least. The maximum pest attack was found from the West direction. Keywords: Cultivars, Fifteen, Himsagar, Neeluddin, Pest, West. 1. Introduction Mango is known as the king of the fruits. It is known from the literature that the Vedas and Ramayana showed mango as a well-known fruit during the Vedic and Aryan ages. The world’s first recorded presence of the existence of mango is seen in the text by Ludovico di Varthema in Italian Language (1510) as Manga. Later this text was further translated in post-classical Latin and French language.