<<

Kyoto 2005 Kyoto 2005 Outline UHE HE ννν emission – What it can tell Theoretical Bound of ννν fluxes Extremely High-Energy ννν generation Shigeru Yoshida Cosmic ννν detection – the current status Chiba University IceCube : reachable to EHE ννν universe http://www.ppl.phys.chiba-u.jp/~syoshida/ Charged particle astronomy?

Physics motivation / / / / origin and acceleration of cosmic rays / ν understand cosmic cataclysms / find new kind of objects? / TeV sources! / neutrino properties ( ν , cross sections ..) / τ / cosmic / dark matter (neutralino annihilation) / rays / / • tests of relativitiy .... / • search for big bang relics ... / • effects of extra dimension etc. ... /

Active Galaxies: Jets 20 TeV gamma rays Higher energies obscured by IR light black hole

radiation enveloping black hole

VLA image of Cygnus A

1 You cannot expect too many ννν!

p γ (p,n ) π 2γ TeV/EGRET observations !! µ ν e ν ν observations! Synchrotron cooling You cannot expect too high energies

TTTheoreticalTheoretical bounds EHE(Extremely HE) ννν DUMAND test string

FREJUS Synchrotron cooling of µ … MACRO opaque for neutrons Production sites with low B MPRMPR a NT-200 t m neutrons can escape Intergalactic space!! o s p h Suppressed by e r i c

W&B ν Synchrotron CoolingW&B µ •GZK Production •Z-burst •Topological Defects/Super heavy Massive particles

Mannheim, Protheroe and Rachen (2000) – Waxman, Bahcall (1999) derived from known limits on extragalactic protons + γ-ray flux Kyoto 2005

GZK Neutrino Production ννν γγγ GZK ννν fluxes (EeV~ZeV!) +++ eee+++ p γγγ πππ+++ μμμ ννν

E = 10 20 eV n p 20 E ~ 0.8 x 10 eV

0.6 x 10 -27 cm 2 2.725 K 0.1

γ+ p→Δ(1232 ) o + Cross Section (mb) Section Cross → π π 411 photons / cm 3 p or n 0.01 Gamma Beam Energy (GeV) Yoshida and Teshima 1993 Yoshida, Dai, Jui, Sommers 1997 Conventional Mechanism of EHE !! Kyoto 2005

2 (Diego González-Díaz, Ricardo Vázquez, Enrique Zas 2003) Parameters involved in calculation. Predicted fluxes.

CR and ννν fluxes for different models Parameters Orientative order of magnitude

γγγ spectral injection index [1-3] m activity evolution index [3-5] zmax z of formation of sources [1-4]

ΩΩΩM density of matter [0.2-1]

Ho Hubble constant [50-80 Km/s/Mpc] B intergalactic magnetic field [B ≤≤≤1nG]

ηηηLρρρL/ηηηoρρρo local enhancement [?] 20 Emax maximum acceleration energy in source [E max >4 10 eV]

(Diego González-Díaz, Ricardo Vázquez, Enrique Zas 2003)

Kyoto 2005 Kyoto 2005

Z-bursts Concept It is the “standard” particle physics

νν p, π+, π-.π0..

CRs extending to Kyoto 2005 superEHEs! Z-burst constraints

(Yoshida, Sigl, Lee 1998) (Yoshida, Sigl, Lee 1998)

3 Kyoto 2005 Where the source of EHE Neutrino Fluxes (Extremely)-high energy ννν?

Present bound My $100 goes to GZK

My $1 goes to GRB

(E)HE ννν generation needs target photons! ∆resonance in the photopion production 0.1 γ+ p→Δ(1232 ) o + Cross Section (mb) Section Cross → π p or π n

2 2 0.01 Ep Eγγγ ~ 0.25 Γ [GeV ] Gamma Beam Energy (GeV) 16 ΓΓΓ ~ 300, Eγγγ~ MeV Ep ~ 10 eV ~ 10 PeV ~ 300, E ~ eV 20 ΓΓΓ γγγ Ep > 10 eV ~ 1 ZeV

E ~ eV ?? Proton-synchrotron model γγγ (Totani 1998)

Energy limit!

4 Kyoto 2003 (Highly biased) conclusion Cosmic neutrinos come from ……. Cosmic ν detection GRBs Eννν ~ PeV + GZK + GRBs(p-synch) E ννν > EeV Neutrino – ANTARES, All “diffusive/background” fluxes IceCube etc.

•Infrequently, a cosmic neutrino is How to build a ν captured in the ice, i.e. the cosmic ray interacts with an ice nucleus

ν Earth •In the crash a muon (or electron, or tau) is produced ν Cherenkov light cone muon µ interaction Detector Detector

•The muon radiates blue light in its wake neutrino •Optical sensors capture (and map) the light

Optical Cherenkov ANTARES Deployment Sites Neutrino Projects

ANTARES BAIKAL La-Seyne-sur-Mer, France Russia Marseille Thetys

La Seyne Toulon sur Mer

Existing Cable Marseille-Corsica NEMO DUMAND Demonstrator Line Catania, Italy Hawaii Nov 1999- Jun 2000 ° ° (cancelled 1995) 42 59 N, 5 17 E Depth 1200 m New Cable (2001) NESTOR La Seyne-ANTARES Pylos, Greece ANTARES 0.1km 2 Site 42 °50 N, 6 °10 E Depth 2400 m

IceCube, South Pole, Antarctica ~ 40 deployments and recoveries of test lines for site exploration 0.1 km 2 Detector with 900 Optical Modules , deployment 2002- 2004

5 ANTARES Layout Laser calibration at the • 12 lines • 25 storeys / line • 3 PMT / storey CPPM dark room

14.5 m

Optical beacon

t2 350 m t1

t3

Cylinder Junction box Optical 100 m fibres 40 km to shore ~60-75 m Laser Readout cables Optical Splitter

AMANDA II Detector IceTop AMANDA IceCube South Pole Amundsen-Scott Station South Pole Skiway

80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed 1400 m to detect neutrinos of all flavors at energies from 10 7 eV (SN) to 10 20 eV

Optical 2400 m module 1996-2000

1200 m IceTop First year deployment (Jan 2005) Who are we ?

IceTop 160 tanks 4 IceCube strings (240 OMs) BartolBartol Research Research Inst, Inst, Univ Univ of of Delaware, Delaware, USA USA Univ.Univ. of of Alabama, Alabama, USA USA Pennsylvania State University, USA Clark-Atlanta University, USA frozen-water tanks 8 IceTop Tanks (16 OMs) Pennsylvania State University, USA Clark-Atlanta University, USA UniversityUniversity of of Wisconsin-Madison, Wisconsin-Madison, USA USA Univ.Univ. of of Maryland, Maryland, USA USA 2 OMs / tank UniversityUniversity of of Wisconsin-River Wisconsin-River Falls, Falls, USA USA IAS,IAS, Princeton, Princeton, USA USA LBNL, Berkeley, USA University of Kansas, USA LBNL, Berkeley, USA University of Kansas, USA UCUC Berkeley, Berkeley, USA USA SouthernSouthern Univ. Univ. and and A&M A&M College, College, Baton Baton Rouge Rouge UCUC Irvine, Irvine, USA USA IceCube ChibaChiba University, University, Japan Japan AMANDA

University of Canterbury, University of Canterbury, Christchurch,Christchurch, New New Zealand Zealand

IceCube Université Libre de Bruxelles, Belgium Uppsala Universitet, Sweden 80 strings Université Libre de Bruxelles, Belgium Uppsala Universitet, Sweden VrijeVrije Universiteit Universiteit Brussel, Brussel, Belgium Belgium StockholmStockholm universitet, universitet, Sweden Sweden 60 OMs/string Université de Mons-Hainaut, Belgium Kalmar Universitet, Sweden Université de Mons-Hainaut, Belgium Kalmar Universitet, Sweden Universität Mainz, Germany Imperial College, London, UK 17 m vertical spacing Universität Mainz, Germany Imperial College, London, UK DESY-Zeuthen,DESY-Zeuthen, Germany Germany UniversityUniversity of of Oxford, Oxford, UK UK Universität Wuppertal, Germany Utrecht University, Utrecht, NL 125 m between strings IceTop Tank deployed in 2004 Universität Wuppertal, Germany Utrecht University, Utrecht, NL 10” Hamamatsu R-7081

6 Color displays: LE Primary Channels 2370 13 2501 23 2631 40 2762 38 2893 34 3023 28 3154 21 3285 19 3415 11 3546 9 3677 6 3807 9 3938 4 4069 5 4199 2 4330 2

Size displays: ADC Size scaling: Lin <4 <9 <13 <17 <22 <26 <31 <35

<40 <44 <49 <53 <58 <62 <67 <71

No external geometry file is opened. Detector: amanda-b-10, 19 strings, 680 modules Data file: he_deff.f2k Displaying data event 1425281 from run 336 Recorded yr/dy: 2000/170 59857.5405130 seconds past midnight. Before cuts: 264 hits, 264 OMs After cuts : 264 hits, 264 OMs

The highest energy event (~200 TeVTeV)))) Detection of νe ,νµ , ντ O(km) long muon tracks Electromagnetic and hadronic cascades

Color displays: LE Primary Channels 2370 13 2501 23 2631 40 2762 38 2893 34 3023 28 3154 21 3285 19 3415 11 3546 9 3677 6 3807 9 3938 4 4069 5 4199 2 m 300 4330 2 ≈ 15 m Size displays: ADC Size scaling: Lin ~ 5 m <4 <9 <13 <17 <22 <26 <31 <35

<40 <44 <49 <53 <58 <62 <67 <71

No external geometry file is opened. Detector: amanda-b-10, 19 strings, 680 modules Data file: he_deff.f2k Displaying data event 1425281 from run 336 Recorded yr/dy: 2000/170 59857.5405130 seconds past midnight. Before cuts: 264 hits, 264 OMs direction determination After cuts : 264 hits, 264 OMs by cherenkov light timing

Excess of cosmic talk HE 2.3-4 Point source search intalk HE 2.3-5 neutrinos? Not yet ... AMANDA II .. for now use number of hit channels as energy variable ... P RE Search for excess events in sky bins for up-going tracks LIM INA muon neutrinos (1997 B10-data) cascades (2000 data) RY accepted by PRL preliminary (2000 data) 697 events observed above horizon 2 3% non-neutrino background for θ > above horizon: mostly atmospheric ν‘s 10 experiment 5° background MC cuts optimized in each declination band -2 ν E signal MC ( e) 10 events / 197 d 0.2

„AGN“ with 10 -5 E-2 -1 -2 -1 -1 GeV cm s sr 1 below horizon:mostly fake events

-1 10 sky subdivided into 300 bins (~7 °x7 °) 4 4.5 5 5.5 6 6.5

log10(Ereco/GeV) cuts determined by MC – blind analyses ! no clustering observed - no evidence for extraterrestrial neutrinos ...

Grid Search Results Low state : Mrk 421 sensitivity (AMANDA) can be compared to our 2000-01 best upper limit (sensitivity shown here) about factor 2

Fit of the measured spectrum from HEGRA (Low) Allowed range for the IceCube sensitivity emitted flux AMANDA sensitivity 2002 Correction for extra- galactic γ absorption ¶: TeV γ-ray spectra are modified by red-shift dependent absorption by intergalactic IR-UV ¶ background O.C.De Jager & F.W.Stecker, Astrophy.J. 566 (2002), 738-743

17

7 TTTheoretical bounds and future GIGA-ton detector!! DUMAND test string

FREJUS MACRO opaque for neutrons MPRMPR a NT-200 t m AMANDA-97 neutrons can escape o s  p AMANDA-00 NT-200+ h e r i AMANDA-II c

W&B ν W&B

µ

IceCube

Mannheim, Protheroe and Rachen (2000) – Waxman, Bahcall (1999) derived from known limits on extragalactic protons + γ-ray flux

10 15 eV 10 16 eV 10 17 eV EHE MC Event examples 300 PeV taus How (E)HE events look like

10 18 eV 10 19 eV 10 20 eV

EHE (EeV or even higher) Neutrino Events Energy loss profile in UHE/EHE

Arriving Extremely Horizontally By JULIeT • Needs Detailed Estimation • Limited Solid Angle Window Stochastic Loss -1 -32 2 -1 -3 -1 (σρ NA) ~ 600 ( σ/10 cm ) (ρ/2.6g cm ) [km] Initiating high energy Cascades! Involving the interactions generating electromagnetic/hadron cascades µN µX e+e-

Kyoto 2005

8 Products

νe νµ ντ e/ γ µ τ π Muon(Neutrinos) from µ τ Tau(Neutrinos) from µ τ νe Weak Weak ν ν ν ν Nadir Angle Weak Weak νµ Suppression Weak Weak By τ decay g ντ

n

i

m

o

c Cascades

n

I e/ γ Decay Decay Pair/decay Pair Pair PhotoNucl. µ Weak Bremss Decay Decay Decay Pair Decay Decay Pair PhotoNucl. Weak Bremss Pair τ Decay π Cascades Kyoto 2005

GZK spectrum @ IceCube depth Down-going events dominate… Atmospheric µ is attenuated faster… Upward-going Downward going!!

11000m Up Down

2800 m 1400 m

Atmospheric muon! – a major backgrond But so steep spectrum

Kyoto 2005 Kyoto 2005

ν EHE events! Signal(GZK) Vs Atm µµµ Downward

1.4km lepton Very Preliminary

- e+e γ noise

γ h 1km t signal

γ u ± ν π r

Ice T

C M 1km lepton e+e- Rock Upward ν MC Truth

9 We MEASURE energy Signal(GZK) Vs Atm µµµ deposit in km3

dE/dX~ βE ∆E~∆XbE

Very Preliminary

s

s

e

u

G

t

s

r

i F

# of Hit

We MEASURE energy Flux as a function of deposit in km3 energy deposit in km3

dE/dX~ βE ∆E~∆XbE dE/dX~ βE ∆E~∆XβE

R<300m 300m

IceCube EHE ν Sensitivity Intensity of EHE µ and τ [cm -2 sec -1] 90% C.L. for 10 year observation S.Yoshida, R.Ishibashi, H.Miyamoto, PRD 69 103004 (2004) GZK m=4 Iµ(E>10PeV) Iτ(E>10PeV) RATE 2 Zmax =4 [/yr/ km ] Down 5.90 10 -19 5.97 10 -19 0.37 Up 3.91 10 -20 6.63 10 -20 0.03 Iµ(E>10PeV) Iτ(E>10PeV) Energy Deposit Energy Deposit Down 4.75 10 -19 3.28 10 -19 0.25 m=7 7.21 10 -17 4.83 10 -17 37.9 Zmax =5 Down Atm µµµ 1.74 10 -19 0.05

RESCEU 2003

10 IceCube : The Present status ν detection by EAS HiRes/Auger etc

Yoshida et al ApJ (1997)

~10 strings will be being deployed now! ~ IceCube

29 th ICRC Pune Charged Particle Event cluster > 40 EeV Astronomy? E>>10 EeV ∆ θ ~ a few deg

No significant excess: AGASA’s triplet Pch ~0.28 (Westerhoff, this conference)

29 th ICRC Pune 29 th ICRC Pune BL Lac Correlation: New Claim

Most recent claim by Gorbunov is based on published HiRes data. AGASA triplet story It uses a 10 EeV threshold, so it is a new claim.

# # Bin # Magnitude Redshift 6cm Radio Flux Obj. CR Sample CRs Size Pairs Prob.

th AGASA >48 EeV -4 Catalog: Veron (9 Ed.) BL Lacs 65 2.5 ° Yakutsk >24 EeV °° 8 < 10 22 z > 0.1 or m < 18 S6cm > 0.17 Jy HiRes > 24 EeV 66 2.5 °°° 0 1.00 6060 unknown 60 °°° HiRes stereo event th AGASA >48 EeV -4 Catalog: Veron (10 Ed.) BL Lacs 65 2.9 °°° 8 10 correlated with EGRET sources Yakutsk >24 EeV 14 no cut no cut no cut HiRes > 24 EeV 66 2.9 °°° 1 .70

th AGASA > 40 EeV 57 2.5 ° Catalog: Veron (10 Ed.) BL Lacs °° 12 .02 156 m < 18 no cut no cut HiRes > 40 EeV 27 2.5 °°° 2 .78

-3 180 170 th HiRes > 10 EeV 271 0.8 °°° 10 10 ° ° Catalog: Veron (10 Ed.) BL Lacs 180°° 170°° 156 °°° °°° m < 18 no cut no cut One event added – BUT below 40 EeV!! Gorbunov et al., JETP Lett. 80 (2004) 145. (Westerhoff, this conference) (Finley, this conference)

11 29 th ICRC Pune Kyoto 2005 Future Outlook (of UHECR) Summary and outlook HE cosmic neutrinos come from Auger: 7 x AGASA by 30 th ICRC GZK (100PeV – 100 EeV) $100 HiRes: <2 years STEREO data to be analyzed. GRB (PeV) GRB-P-synch $10 ~70% more statistics Neutrino observatory IceCube provides DATA “independent” dataset for testing the “BL Lac” 0.1 x IceCube ~2006! New observatory in the Northern sky Strong capability of EHE ννν search Telescope Array Charged Particle Astronomy (Cluster, BLLac E>10 EeV) wait for 2004-5 HiRes data for real test • EHE /Neutrino search 本講演の収録原稿は来年1月まで待ってください。 EAS detector, IceCube , Rice, ANITA etc .

12