Pushing the Limits of Discovery

Total Page:16

File Type:pdf, Size:1020Kb

Pushing the Limits of Discovery editorial Pushing the limits of discovery Be it neutrinos, ultra-high-energy photons or gravitational waves, new cosmic messengers have expanded the available discovery space of astronomy by exploring previously inaccessible astrophysical environments. he neutrino, an elusive elementary other cosmic neutrinos, the poor angular There are interesting parallels particle with a rest mass so small localization of neutrino detectors (at best to be drawn between neutrino and Tthat it can effectively be considered ~0.7° for the highest energies for IceCube) very-high-energy gamma-ray astronomy. zero, is the perfect messenger from afar. makes it extremely difficult to pinpoint the Both probe highly energetic astrophysical Because they only interact with matter direction on the sky from which a specific processes that might otherwise be through the weak interaction and gravity event is coming. In 2017, the coincidence hidden from conventional astronomical (also weak, given their vanishingly small of a neutrino event with a flaring blazar observations. Furthermore, given the mass), neutrinos are able to escape most was a big step forward. It confirmed that challenges linked to the technology required environments unscathed and unchanged, active galactic nuclei are potent particle for their detection, both probes have only hence delivering pristine information on a accelerators and one of the sources of recently entered an era of reliable detections number of (astro)physical processes. That is high-energy cosmic neutrinos (see Elena of multiple events. While high-energy the theory of course, because in practice and Pian’s News & Views). gamma-ray astronomy may have a head exactly due to their elusiveness, detecting In this issue of Nature Astronomy, start — it is after all an extension of these neutrinos is no easy feat. Robert Stein and collaborators report the the electromagnetic spectrum, which While the direct detection of a association of a high-energy neutrino astronomers have been studying for a very (man-made) neutrino through the beta event with a different type of astrophysical long time — both fields are set to grow capture process occurred in 1956, it was source: a tidal disruption event, when exponentially over the coming years. not until 1968 that the first extraterrestrial a star is pulled apart during its infall The next milestone for high-energy neutrinos, from the Sun, were detected towards a supermassive black hole. In a gamma-ray astronomy will be the by the Homestake experiment, marking companion paper, Walter Winter and Cecilia commissioning of the Cherenkov Telescope the start of neutrino astronomy. Two Lunardini present an astrophysical model Array (first operations are expected to more decades passed before a fortuitous explaining the observations. As for the commence next year), which will afford supernova in our nearby Large Magellanic blazar association before it, the additional unprecedented sensitivity and localization Cloud led to the detection of neutrinos from information carried by the IceCube-detected capabilities up to energies of 300 TeV further away in our cosmic neighbourhood. neutrino event provides valuable insights and will tackle a number of fundamental The neutrino detector Kamiokande-II into tidal disruption events (see a discussion physical and astrophysical questions (see a measured eleven neutrinos from the by Kimitake Hayasaki). Meeting Report from the first Cherenkov supernova SN 1987A in February 1987. Neutrinos are not the only tool currently Telescope Array symposium in 2019). This discovery, which together with the used for pushing the limits of astrophysical Concerning neutrinos, in addition to detection of solar neutrinos led to a Nobel discovery. Ultra-high-energy astrophysics is upgrading the capabilities of IceCube, Prize for Masatoshi Koshiba and Raymond also enjoying a productive era, with multiple several next-generation neutrino detectors Davis Jr, further established the field of facilities now online to investigate this as yet are planned (including KM3NeT and the neutrino astronomy. scarcely explored part of the electromagnetic Pacific Ocean Neutrino Experiment). Fast-forward to today and the field spectrum. The detection of the Crab nebula The observational arsenal of astronomers is in full bloom. There are now multiple in the very-high-energy gamma rays by the keeps increasing and every additional way of neutrino experiments around the globe. Whipple telescope in 1989 led to a number looking at the night sky leads to an expanded Whether using ice, water, heavy water or of concurrent and subsequent experiments discovery space, a deeper understanding of even chlorine, the principle of all neutrino (including HESS, MAGIC and VERITAS) long-studied astrophysical phenomena and detectors is the same: put a large enough looking to expand our understanding of the in some cases the discovery of completely volume of a homogeneous medium in very-high-energy gamma-ray sky. new phenomena. Most tantalizingly, for the path of neutrinos and one of them In this issue, we publish two new sets both neutrinos and very-high-energy is bound to interact. The most sensitive of observations pushing the limits of gamma-rays, these observational probes and high-resolution detector currently very-high-energy gamma-ray astronomy straddle the (admittedly fuzzy) division in operation, the IceCube Neutrino in the TeV range. The High-Altitude Water between physics and astrophysics. Observatory in Antarctica, has been Cherenkov Observatory and the Tibet air The potential of cross-pollination and detecting cosmic neutrinos since the shower array report the detection of the serendipitous discoveries should motivate early 2010s. Cygnus cocoon and the supernova remnant both communities to keep pushing those Despite routine detections of cosmic G106.3+2.7, respectively. Both studies limits further. ❐ neutrinos, understanding and studying their constrain the astrophysical processes leading origins has not been straightforward. On top to the acceleration of cosmic-ray particles of the very fundamental issues of separating to PeV energies in two different and Published online: 17 May 2021 signal from noise, and solar neutrinos from unexpected astrophysical environments. https://doi.org/10.1038/s41550-021-01374-4 NATURE ASTRONOMY | VOL 5 | MAY 2021 | 425 | www.nature.com/natureastronomy 425.
Recommended publications
  • CERN Courier–Digital Edition
    CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www.
    [Show full text]
  • Polarimetric Properties of Blazars Caught by the WEBT
    galaxies Review Polarimetric Properties of Blazars Caught by the WEBT Claudia M. Raiteri * and Massimo Villata INAF, Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese, Italy; [email protected] * Correspondence: [email protected] Abstract: Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called “blazars”. The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the g-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies. Keywords: active galactic nuclei; blazars; jets; polarimetry Citation: Raiteri, C.M.; Villata, M.
    [Show full text]
  • Neutrino Astronomy
    Astrophysics from Antarctica Proceedings IAU Symposium No. 288, 2012 c International Astronomical Union 2013 M. G. Burton, X. Cui & N. F. H. Tothill, eds. doi:10.1017/S1743921312016729 Neutrino Astronomy: An Update Francis Halzen Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison email: [email protected] Abstract. Detecting neutrinos associated with the still enigmatic sources of cosmic rays has reached a new watershed with the completion of IceCube, the first detector with sensitivity to the anticipated fluxes. In this review, we will briefly revisit the rationale for constructing kilometer-scale neutrino detectors and summarize the status of the field. Keywords. Neutrinos, cosmic rays, astrophysics 1. Introduction Soon after the 1956 observation of the neutrino (Reines, 1956), the idea emerged that it represented the ideal astronomical messenger. Neutrinos reach us from the edge of the Universe without absorption and with no deflection by magnetic fields. Neutrinos have the potential to escape unscathed from the inner neighborhood of black holes, and, the subject of this update, from the cosmic accelerators where cosmic rays are born. Their weak interactions also make cosmic neutrinos very difficult to detect. Immense parti- cle detectors are required to collect cosmic neutrinos in statistically significant numbers (Klein, 2008). Already by the 1970s, it had been understood that a kilometer-scale de- tector was needed to observe the “cosmogenic” neutrinos produced in the interactions of cosmic rays with background microwave photons (Roberts, 1992). Today’s estimates of the sensitivity for observing potential cosmic accelerators such as Galactic supernova remnants, active galactic nuclei (AGN), and gamma-ray bursts (GRB) unfortunately point to the same exigent requirement (Gaisser, 1995).
    [Show full text]
  • A Measurement of the 2 Neutrino Double Beta Decay Rate of 130Te in the CUORICINO Experiment by Laura Katherine Kogler
    A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Stuart J. Freedman, Chair Professor Yury G. Kolomensky Professor Eric B. Norman Fall 2011 A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment Copyright 2011 by Laura Katherine Kogler 1 Abstract A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler Doctor of Philosophy in Physics University of California, Berkeley Professor Stuart J. Freedman, Chair CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2νββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of ∼10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2νββ rate. The enriched crystals contained a total of ∼350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals.
    [Show full text]
  • Particle Detectors Lecture Notes
    Lecture Notes Heidelberg, Summer Term 2011 The Physics of Particle Detectors Hans-Christian Schultz-Coulon Kirchhoff-Institut für Physik Introduction Historical Developments Historical Development γ-rays First 1896 Detection of α-, β- and γ-rays 1896 β-rays Image of Becquerel's photographic plate which has been An x-ray picture taken by Wilhelm Röntgen of Albert von fogged by exposure to radiation from a uranium salt. Kölliker's hand at a public lecture on 23 January 1896. Historical Development Rutherford's scattering experiment Microscope + Scintillating ZnS screen Schematic view of Rutherford experiment 1911 Rutherford's original experimental setup Historical Development Detection of cosmic rays [Hess 1912; Nobel prize 1936] ! "# Electrometer Cylinder from Wulf [2 cm diameter] Mirror Strings Microscope Natrium ! !""#$%&'()*+,-)./0)1&$23456/)78096$/'9::9098)1912 $%&!'()*+,-.%!/0&1.)%21331&10!,0%))0!%42%!56784210462!1(,!9624,10462,:177%&!(2;! '()*+,-.%2!<=%4*1;%2%)%:0&67%0%&!;1&>!Victor F. Hess before his 1912 balloon flight in Austria during which he discovered cosmic rays. ?40! @4)*%! ;%&! /0%)),-.&1(8%! A! )1,,%2! ,4-.!;4%!BC;%2!;%,!D)%:0&67%0%&,!(7!;4%! EC2F,1-.,%!;%,!/0&1.)%21331&10,!;&%.%2G!(7!%42%!*H&!;4%!A8)%,(2F!FH2,04F%!I6,40462! %42,0%))%2! J(! :K22%2>! L10&4(7! =4&;! M%&=%2;%0G! (7! ;4%! E(*0! 47! 922%&%2! ;%,! 9624,10462,M6)(7%2!M62!B%(-.04F:%40!*&%4!J(!.1)0%2>! $%&!422%&%G!:)%42%&%!<N)42;%&!;4%20!;%&!O8%&3&H*(2F!;%&!9,6)10462!;%,!P%&C0%,>!'4&;!%&! H8%&! ;4%! BC;%2! F%,%2:0G! ,6! M%&&42F%&0! ,4-.!;1,!1:04M%!9624,10462,M6)(7%2!1(*!;%2!
    [Show full text]
  • Bright Prospects for Tevatron Run II
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 Bright prospects for Tevatron Run II JLAB Virginia laboratory delivers terahertz light p6 ^^^J Modular and expandable power supplies WÊ H Communications via TCP/IP içert. n_.___910S.CAEN '^^^*aBOKS^^^^ • ÊÊÊ WÊÊÊSêSê É TÏSjj à OPC Server to ease integration in DCS J Directly interfaced to JCOP Framework p " j^pj ^ ^^^^ Wa9neticFie,dand^ ^^HTJHj^^^^^^^^^^^^^^^^^^^^^^E' ' tfHl far IM Éfefi-*il * CAEN: your largest choice of HV & LV )^ H MULTICHANNEL POWER SUPPLIES CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier (ISSN 0304-288X) is distributed to member state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are CERN not necessarily those of the CERN management. Editors James Gillies and Christine Sutton CERN, 1211 Geneva 23, Switzerland Email [email protected] Fax+41 (22) 782 1906 Web cerncourier.com COURIER Advisory Board R Landua (Chairman), F Close, E Lillest0l, VOLUME 43 NUMBER 1 JANUARY/FEBRUARY 2003 H Hoffmann, C Johnson, K Potter, P Sphicas Laboratory correspondents: Argonne National Laboratory (US): D Ayres Brookhaven, National Laboratory (US): PYamin Cornell University (US): D G Cassel DESY Laboratory (Germany): Ilka Flegel, P Waloschek Fermi National Accelerator Laboratory (US): Judy Jackson GSI Darmstadt (Germany): G Siegert INFN
    [Show full text]
  • Daya at Antineutrinos Reactor Eebr1 2006 1, December Proposal Aabay Daya Θ 13 Using Daya Bay Collaboration
    Daya Bay Proposal December 1, 2006 A Precision Measurement of the Neutrino Mixing Angle θ13 Using Reactor Antineutrinos At Daya Bay arXiv:hep-ex/0701029v1 15 Jan 2007 Daya Bay Collaboration Beijing Normal University Xinheng Guo, Naiyan Wang, Rong Wang Brookhaven National Laboratory Mary Bishai, Milind Diwan, Jim Frank, Richard L. Hahn, Kelvin Li, Laurence Littenberg, David Jaffe, Steve Kettell, Nathaniel Tagg, Brett Viren, Yuping Williamson, Minfang Yeh California Institute of Technology Christopher Jillings, Jianglai Liu, Christopher Mauger, Robert McKeown Charles Unviersity Zdenek Dolezal, Rupert Leitner, Viktor Pec, Vit Vorobel Chengdu University of Technology Liangquan Ge, Haijing Jiang, Wanchang Lai, Yanchang Lin China Institute of Atomic Energy Long Hou, Xichao Ruan, Zhaohui Wang, Biao Xin, Zuying Zhou Chinese University of Hong Kong, Ming-Chung Chu, Joseph Hor, Kin Keung Kwan, Antony Luk Illinois Institute of Technology Christopher White Institute of High Energy Physics Jun Cao, Hesheng Chen, Mingjun Chen, Jinyu Fu, Mengyun Guan, Jin Li, Xiaonan Li, Jinchang Liu, Haoqi Lu, Yusheng Lu, Xinhua Ma, Yuqian Ma, Xiangchen Meng, Huayi Sheng, Yaxuan Sun, Ruiguang Wang, Yifang Wang, Zheng Wang, Zhimin Wang, Liangjian Wen, Zhizhong Xing, Changgen Yang, Zhiguo Yao, Liang Zhan, Jiawen Zhang, Zhiyong Zhang, Yubing Zhao, Weili Zhong, Kejun Zhu, Honglin Zhuang Iowa State University Kerry Whisnant, Bing-Lin Young Joint Institute for Nuclear Research Yuri A. Gornushkin, Dmitri Naumov, Igor Nemchenok, Alexander Olshevski Kurchatov Institute Vladimir N. Vyrodov Lawrence Berkeley National Laboratory and University of California at Berkeley Bill Edwards, Kelly Jordan, Dawei Liu, Kam-Biu Luk, Craig Tull Nanjing University Shenjian Chen, Tingyang Chen, Guobin Gong, Ming Qi Nankai University Shengpeng Jiang, Xuqian Li, Ye Xu National Chiao-Tung University Feng-Shiuh Lee, Guey-Lin Lin, Yung-Shun Yeh National Taiwan University Yee B.
    [Show full text]
  • HUBBLE SPACE TELESCOPE ULTRAVIOLET SPECTROSCOPY of 14 LOW-REDSHIFT QUASARS1 Rajib Ganguly,2 Michael S
    A The Astronomical Journal, 133:479Y486, 2007 February # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. HUBBLE SPACE TELESCOPE ULTRAVIOLET SPECTROSCOPY OF 14 LOW-REDSHIFT QUASARS1 Rajib Ganguly,2 Michael S. Brotherton,2 Nahum Arav,3 Sara R. Heap,4 Lutz Wisotzki,5 Thomas L. Aldcroft,6 Danielle Alloin,7,8 Ehud Behar,9 Gabriela Canalizo,10 D. Michael Crenshaw,11 Martijn de Kool,12 Kenneth Chambers,13 Gerald Cecil,14 Eleni Chatzichristou,15 John Everett,16,17 Jack Gabel,3 C. Martin Gaskell,18 Emmanuel Galliano,19 Richard F. Green,20 Patrick B. Hall,21 Dean C. Hines,22 Vesa T. Junkkarinen,23 Jelle S. Kaastra,24 Mary Elizabeth Kaiser,25 Demosthenes Kazanas,4 Arieh Konigl,26 Kirk T. Korista,27 Gerard A. Kriss,28 Ari Laor,9 Karen M. Leighly,29 Smita Mathur,30 Patrick Ogle,31 Daniel Proga,32 Bassem Sabra,33 Ran Sivron,34 Stephanie Snedden,35 Randal Telfer,36 and Marianne Vestergaard37 Received 2006 June 27; accepted 2006 October 4 ABSTRACT We present low-resolution ultraviolet spectra of 14 low-redshift (zem P 0:8) quasars observed with the Hubble Space Telescope STIS as part of a Snapshot project to understand the relationship between quasar outflows and luminosity. By design, all observations cover the C iv emission line. Ten of the quasars are from the Hamburg-ESO catalog, three are from the Palomar-Green catalog, and one is from the Parkes catalog. The sample contains a few interesting quasars, including two broad absorption line (BAL) quasars (HE 0143À3535 and HE 0436À2614), one quasar with a mini-BAL (HE 1105À0746), and one quasar with associated narrow absorption (HE 0409À5004).
    [Show full text]
  • Session: Neutrino Astronomy
    Session: Neutrino Astronomy Chair: Takaaki Kajita, Institute for Cosmic Ray Research, Univ. of Tokyo Basic natures of neutrinos Neutrino was introduced in 1930 by W. Pauli in order to save the energy conservation law in nuclear beta decay processes, in which the emitted electron exhibits a continuous energy spectrum. It was assumed that the penetration power of neutrinos is much higher than that of the gamma rays. More than 20 years later, the existence of neutrinos was experimentally confirmed by an experiment that measured neutrinos produced by a nuclear power reactor. Since then, the basic nature of neutrinos has been understood through various theoretical and experimental studies: Neutrinos interact with matter extremely weakly. The number of neutrino species is three. They are called electron-neutrino, muon-neutrino and tau-neutrino. In addition, recent neutrino experiments discovered that neutrinos have very small masses. Observing the Universe by neutrinos (1) Because of the extremely high penetration power of neutrinos, neutrinos produced at the center of a star easily penetrate to the outer space. Theories of astrophysics predict that there are various processes that neutrinos play an essential role at the center of stars. For example, the Sun is generating its energy by nuclear fusion processes in the central region. In these processes, low energy electron neutrinos with various energy spectra are generated. Thus the observation of solar neutrinos directly probes the nuclear fusion reactions in the Sun. Another example is the supernova explosion. While the optical measurements observe an exploding star, what is happening in the central region of the star is the collapse of the core of a massive star.
    [Show full text]
  • A Half-Century with Solar Neutrinos*
    REVIEWS OF MODERN PHYSICS, VOLUME 75, JULY 2003 Nobel Lecture: A half-century with solar neutrinos* Raymond Davis, Jr. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA and Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA (Published 8 August 2003) Neutrinos are neutral, nearly massless particles that neutrino physics was a field that was wide open to ex- move at nearly the speed of light and easily pass through ploration: ‘‘Not everyone would be willing to say that he matter. Wolfgang Pauli (1945 Nobel Laureate in Physics) believes in the existence of the neutrino, but it is safe to postulated the existence of the neutrino in 1930 as a way say that there is hardly one of us who is not served by of carrying away missing energy, momentum, and spin in the neutrino hypothesis as an aid in thinking about the beta decay. In 1933, Enrico Fermi (1938 Nobel Laureate beta-decay hypothesis.’’ Neutrinos also turned out to be in Physics) named the neutrino (‘‘little neutral one’’ in suitable for applying my background in physical chemis- Italian) and incorporated it into his theory of beta decay. try. So, how lucky I was to land at Brookhaven, where I The Sun derives its energy from fusion reactions in was encouraged to do exactly what I wanted and get paid for it! Crane had quite an extensive discussion on which hydrogen is transformed into helium. Every time the use of recoil experiments to study neutrinos. I imme- four protons are turned into a helium nucleus, two neu- diately became interested in such experiments (Fig.
    [Show full text]
  • Multi-Messenger Astrophysics with the First Lines of the Km3net Neutrino Telescopes
    MULTI-MESSENGER ASTROPHYSICS WITH THE FIRST LINES OF THE KM3NET NEUTRINO TELESCOPES PHD SUPERVISOR : THIERRY PRADIER (MAÎTRE DE CONFÉRENCES) INSTITUT PLURIDISCIPLINAIRE HUBERT CURIEN, DÉPARTEMENT RECHERCHES SUBATOMIQUES 23 RUE DU LOESS BP 28 67037 STRASBOURG CEDEX 2 TEL : 03 88 10 6620 ; E-MAIL : [email protected] The proposed PhD thesis will be performed in the framework of the european collaborations KM3NeT, which use underwater « neutrino telescopes » in the Mediterranean Sea, to detect and study GeV to PeV atmospheric/cosmic neutrinos. IceCube has revealed in 2013 the existence of cosmic neutrinos, yielding information on the origin of cosmic rays. In July 2018, a possible connection of these cosmic neutrinos with astrophysical sources such as blazars was revealed. Moreover, the observation of gravitational waves and electromagnetic radiations from the merger of two neutron stars in 2017, and the search for coincident neutrinos, has opened the field of multi-messenger astrophysics : the combination of photons from all wavelengths, neutrinos, cosmic-rays and gravitational waves to improve our knowledge of astrophysical sources and discover new sources, in which IPHC has taken an active part. In 2019, the next-generation neutrino telescopes built by the KM3NeT collaboration will begin their deployment and data taking, with more than 300 lines on 2 sites to be deployed over a few years. The french site in Toulon will be dedicated to low energy GeV neutrinos, to determine the unknown neutrino mass hierarchy, with ORCA (Oscillation Research with Cosmics in the Abyss). The italian site, in Sicily, will host ARCA (Astroparticle Research with Cosmics in the Abyss), dedicated, like ANTARES, to TeV-PeV neutrino astronomy.
    [Show full text]
  • 11 – Neutrino Astronomy
    11 – Neutrino astronomy introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 11.1 – The standard solar model As we discussed in “stellar evolution III”, to obtain a reliable model for the sun, we need to solve four differential equations (in the absence of convection). dM(r) 2 (11.1) dP(r) GM(r)ρ(r) = 4πr ρ(r) = − (11.2) dr dr r2 dT(r) 3 (r) (r) dL(r) 2 (11.3) ρ κ (11.4) = 4πr ρ(r)ε(r) = − 2 3 L(r) dr dr 16πr σT (r) € € Complemented by P = P (, T, chemical composition)€ The equation of state € κ = κ (, T, chemical composition) Opacity ε = ε (, T, chemical composition) Energy generation But we also need to include how the chemical composition changes through nuclear reaction network. For the sun, the pp-chain and the CNO cycle are considered. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 2 General reaction network When the reaction network proceeds via one-body and two-body reactions, such as the pp-chain. and CNO cycle. But 3-body processes such as the triple-alpha reaction are also possible. A general reaction network can be written as dYi i i = ∑N j λ jY j + ∑N jk ρNA < σ v > Y jYk + dt j jk (11.5) 2 i 2 ∑N jkm ρ NA < σ v > Y jYkYm +! jkm i where N j,k,l,... is the number of particles of nuclear species i created or destroyed by the reaction j + k + l + · · · à i. € The reactions listed on the right hand side of the equation above belong to three categories of reactions: (1) decays, photodisintegrations, electron and positron captures and neutrino induced reactions (rj = λjnj), (2) two-particle reactions (rj,k =< σv >j,knjnk), and (3) three-particle reactions 12 (rj,k,l =< σv>j,k,lnjnknl) like the triple-alpha process (α + α + α à C + γ).
    [Show full text]