A Parallel Camera Image Signal Processor for SIMD Architecture Seung-Hyun Choi1, Junguk Cho2, Yong-Min Tai2 and Seong-Won Lee1*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tracking and Automation of Images by Colour Based
Vol 11, Issue 8,August/ 2020 ISSN NO: 0377-9254 TRACKING AND AUTOMATION OF IMAGES BY COLOUR BASED PROCESSING N Alekhya 1, K Venkanna Naidu 2 and M.SunilKumar 3 1PG student, D.N.R College of Engineering, ECE, JNTUK, INDIA 2 Associate Professor D.N.R College of Engineering, ECE, JNTUK, INDIA 3Assistant Professor Sir CRR College of Engineering , EEE, JNTUK, INDIA [email protected], [email protected] ,[email protected] Abstract— Now a day all application sectors are mostly image analysis involves maneuver the moving for the automation processing and image data to conclude exactly the information sensing . for example image processing in compulsory to help to answer a computer imaging medical field ,in industrial process lines , object problem. detection and Ranging application, satellite Digital image processing methods stems from two imaging Processing ,Military imaging etc, In principal application areas: improvement of each and every application area the raw images pictorial information for human interpretation, and are to be captured and to be processed for processing of image data for tasks such as storage, human visual inspection or digital image transmission, and extraction of pictorial processing systems. Automation applications In information this proposed system the video is converted into The remaining paper is structured as follows. frames and then it is get divided into sub bands Section 2 deals with the existing method of Image and then background is get subtracted, then the Processing. Section 3 deals with the proposed object is get identified and then it is tracked in method of Image Processing. Section 4 deals the the framed from the video .This work presents a results and discussions. -
Video Compression for New Formats
ANNÉE 2016 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications Ecole doctorale Matisse présentée par Philippe Bordes Préparée à l’unité de recherche UMR 6074 - INRIA Institut National Recherche en Informatique et Automatique Adapting Video Thèse soutenue à Rennes le 18 Janvier 2016 devant le jury composé de : Compression to new Thomas SIKORA formats Professeur [Tech. Universität Berlin] / rapporteur François-Xavier COUDOUX Professeur [Université de Valenciennes] / rapporteur Olivier DEFORGES Professeur [Institut d'Electronique et de Télécommunications de Rennes] / examinateur Marco CAGNAZZO Professeur [Telecom Paris Tech] / examinateur Philippe GUILLOTEL Distinguished Scientist [Technicolor] / examinateur Christine GUILLEMOT Directeur de Recherche [INRIA Bretagne et Atlantique] / directeur de thèse Adapting Video Compression to new formats Résumé en français Adaptation de la Compression Vidéo aux nouveaux formats Introduction Le domaine de la compression vidéo se trouve au carrefour de l’avènement des nouvelles technologies d’écrans, l’arrivée de nouveaux appareils connectés et le déploiement de nouveaux services et applications (vidéo à la demande, jeux en réseau, YouTube et vidéo amateurs…). Certaines de ces technologies ne sont pas vraiment nouvelles, mais elles ont progressé récemment pour atteindre un niveau de maturité tel qu’elles représentent maintenant un marché considérable, tout en changeant petit à petit nos habitudes et notre manière de consommer la vidéo en général. Les technologies d’écrans ont rapidement évolués du plasma, LED, LCD, LCD avec rétro- éclairage LED, et maintenant OLED et Quantum Dots. Cette évolution a permis une augmentation de la luminosité des écrans et d’élargir le spectre des couleurs affichables. -
22926-22936 Page 22926 the Color Features Based on Computer Vision
Umapathy Eaganathan* et al. /International Journal of Pharmacy & Technology ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com ANALYSIS OF VARIOUS COLOR MODELS IN MEDICAL IMAGE PROCESSING Umapathy Eaganathan* Faculty in Computing, Asia Pacific University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia. Received on: 20.10.2016 Accepted on: 25.11.2016 Abstract Color is a visual element for humanbeing to perceive in everyday activities. Inspecting the color manually may be a tedious job to the humanbeing whereas the current digital systems and technologies help to inspect even the pixels color accurately for the given objects. Various researches carried out by the researchers over the world to identify diseased spots, damaged spots, pattern recognition, and graphical identification. Color plays a vital role in image processing and geographical information systems. This article explains about different color models such as RGB, YCbCr, HSV, HSI, CIELab in medical image processing and it additionally explores how these color models can be derived from the basic color model RGB. Further this study will also discuss the suitable color models that can be used in medical image processing. Keywords : Image Processing, Medical Images, RGB Color, Image Segmentation, Pattern Recognition, Color Models 1. Introduction Nowadays in medical health system the images playing a vital role throughout the process of medical disease management, intensive treatment, surgical procedures and clinical researches. In medical image processing such as neuro-imaging, bio-imaging, medical visualisations the imaging modalities based on digital images and may vary depends upon the diagnosis stage. Main improvements of medical imaging systems working faster than the traditional disease identification system. -
Low Power Asynchronous Digital Signal Processing
LOW POWER ASYNCHRONOUS DIGITAL SIGNAL PROCESSING A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science & Engineering October 2000 Michael John George Lewis Department of Computer Science 1 Contents Chapter 1: Introduction ....................................................................................14 Digital Signal Processing ...............................................................................15 Evolution of digital signal processors ....................................................17 Architectural features of modern DSPs .........................................................19 High performance multiplier circuits .....................................................20 Memory architecture ..............................................................................21 Data address generation .........................................................................21 Loop management ..................................................................................23 Numerical precision, overflows and rounding .......................................24 Architecture of the GSM Mobile Phone System ...........................................25 Channel equalization ..............................................................................28 Error correction and Viterbi decoding ...................................................29 Speech transcoding ................................................................................31 Half-rate and enhanced -
Application No. AU 2020201212 A1 (19) AUSTRALIAN PATENT OFFICE
(12) STANDARD PATENT APPLICATION (11) Application No. AU 2020201212 A1 (19) AUSTRALIAN PATENT OFFICE (54) Title Adaptive color space transform coding (51) International Patent Classification(s) H04N 19/122 (2014.01) H04N 19/196 (2014.01) H04N 19/186 (2014.01) H04N 19/46 (2014.01) (21) Application No: 2020201212 (22) Date of Filing: 2020.02.20 (43) Publication Date: 2020.03.12 (43) Publication Journal Date: 2020.03.12 (62) Divisional of: 2017265177 (71) Applicant(s) Apple Inc. (72) Inventor(s) TOURAPIS, Alexandras (74) Agent / Attorney FPA Patent Attorneys Pty Ltd, ANZ Tower 161 Castlereagh Street, Sydney, NSW, 2000, AU 1002925143 ABSTRACT 2020 An apparatus for decoding video data comprising: a means for decoding encoded video data to determine transformed residual sample data and to determine color transform parameters Feb for a current image area, wherein the color transform parameters specify inverse color 20 transform coefficients with a predefined precision; a means for determining a selected inverse color transform for the current image area from the color transform parameters; a means for performing the selected inverse color transform on the transformed residual 1212 sample data to produce inverse transformed residual sample data; and a means for combining the inverse transformed residual sample data with motion predicted image data to generate restored image data for the current image area of an output video. 1002925143 ADAPTIVE COLOR SPACE TRANSFORM CODING 2020 Feb PRIORITY CLAIM 20 [01] The present application claims priority to U.S. Patent Application No. 13/940,025, filed on July 11, 2013, which is a Continuation-in-Part of U.S. -
The Digital Signal Processor Derby
SEMICONDUCTORS The newest breeds trade off speed, energy consumption, and cost to vie for The an ever bigger piece of the action Digital Signal Processor BY JENNIFER EYRE Derby Berkeley Design Technology Inc. pplications that use digital signal-processing purpose processors typically lack these specialized features and chips are flourishing, buoyed by increasing per- are not as efficient at executing DSP algorithms. formance and falling prices. Concurrently, the For any processor, the faster its clock rate or the greater the market has expanded enormously, to an esti- amount of work performed in each clock cycle, the faster it can mated US $6 billion in 2000. Vendors abound. complete DSP tasks. Higher levels of parallelism, meaning the AMany newcomers have entered the market, while established ability to perform multiple operations at the same time, have companies compete for market share by creating ever more a direct effect on a processor’s speed, assuming that its clock novel, efficient, and higher-performing architectures. The rate does not decrease commensurately. The combination of range of digital signal-processing (DSP) architectures available more parallelism and faster clock speeds has increased the is unprecedented. speed of DSP processors since their commercial introduction In addition to expanding competition among DSP proces- in the early 1980s. A high-end DSP processor available in sor vendors, a new threat is coming from general-purpose 2000 from Texas Instruments Inc., Dallas, for example, is processors with DSP enhancements. So, DSP vendors have roughly 250 times as fast as the fastest processor the company begun to adapt their architectures to stave off the outsiders. -
Ycbcr and XYZ Colour Image Edge Detection
GNANATHEJA RAKESH V, T SREENIVASULU REDDY / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 2,Mar-Apr 2012, pp.152-156 YCoCg color Image Edge detection GNANATHEJA RAKESH V T SREENIVASULU REDDY M.Tech Student, Department of EEE Associate Professor of ECE, Sri Venkateswara University College of Engineering, Sri Venkateswara University College of Engineering, Tirupati Tirupati Abstract: Edges are prominent features in images gray value images when neighboring objects have and their analysis and detection are an essential goal different hues but equal intensities. Such objects can not in computer vision and image processing. Indeed, be distinguished in gray value images. They are treated identifying and localizing edges are a low level task in like one big object in the scene. This is not significant if a variety of applications such as 3-D reconstruction, obstacle avoidness is the task of the vision system. shape recognition, image compression, enhancement, Opposed to this, the capability of distinguishing between and restoration. This paper presents a comparative one big object and two (or several) small objects may study on different approaches to edge detection of become crucial for the task of object grasping or even in colour images. The approaches are based on 2-D image segmentation. Additionally, The common transforming the RGB image to YUV and YCoCg shortcomings of the RGB image edge detection and back to RGB colour model. Edges are detected arithmetic are the low speed and the color losses after the by Laplacian operator and Gradient Operator. The each component of the image is processed. -
On Performance of GPU and DSP Architectures for Computationally Intensive Applications
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2013 On Performance of GPU and DSP Architectures for Computationally Intensive Applications John Faella University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Faella, John, "On Performance of GPU and DSP Architectures for Computationally Intensive Applications" (2013). Open Access Master's Theses. Paper 2. https://digitalcommons.uri.edu/theses/2 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. ON PERFORMANCE OF GPU AND DSP ARCHITECTURES FOR COMPUTATIONALLY INTENSIVE APPLICATIONS BY JOHN FAELLA A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENE IN ELECTRICAL ENGINEERING UNIVERSITY OF RHODE ISLAND 2013 MASTER OF SCIENCE THESIS OF JOHN FAELLA APPROVED: Thesis Committee: Major Professor Dr. Jien-Chung Lo Dr. Resit Sendag Dr. Lutz Hamel Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2013 ABSTRACT This thesis focuses on the implementations of a support vector machine (SVM) algorithm on digital signal processor (DSP), graphics processor unit (GPU), and a common Intel i7 core architecture. The purpose of this work is to identify which of the three is most suitable for SVM implementation. The performance is measured by looking at the time required by each of the architectures per prediction. This work also provides an analysis of possible alternatives to existing implementations of computationally intensive algorithms, such as SVM. -
Colour Image Segmentation Using Perceptual Colour Difference Saliency Algorithm
COLOUR IMAGE SEGMENTATION USING PERCEPTUAL COLOUR DIFFERENCE SALIENCY ALGORITHM By TAIWO, TUNMIKE BUKOLA (21557473) Submitted in fulfilment of the requirements of the MASTERS DEGREE IN INFORMATION AND COMMUNICATION TECHNNOLOGY in the DEPARTMENT OF INFORMATION TECHNOLOGY in the FACULTY OF ACCOUNTING AND INFORMATICS at DURBAN UNIVERSITY OF TECHNOLOGY July 2017 DECLARATION I, Taiwo, Tunmike Bukola hereby declares that this dissertation is my own work and has not been previously submitted in any form to any other university or institution of higher learning by other persons or myself. I further declare that all the sources of information used in this dissertation have been acknowledged. _________________________ ____________________ Taiwo, Tunmike Bukola Date Approved for final submission Supervisor: _______________________ ______________________ Professor O. O. Olugbara Date PhD (Computer Science) Co-Supervisor: __________________ ______________________ Dr. Delene Heukelman Date DTech (Information Technology) ii DEDICATION This dissertation is dedicated to my family for their support, encouragement and motivation throughout the period of this study. iii ACKNOWLEDGEMENTS First and foremost, my profound appreciation goes to the Almighty Jehovah, the giver of life and wisdom, for His limitless love, inspiration and strength throughout the period of this study. I return to Him all the glory, honour and adoration. I am particularly grateful to my supervisor, Prof. Oludayo Olugbara. A humble genius in image processing research field, his mentorship on both professional and personal levels was tremendous. Since the beginning of this study, he has always been there not only as my supervisor, but a father and guardian. I wouldn’t be writing this today if I had a different supervisor. I really appreciate all the valuable time he spent in helping me with programming and new concepts with reference to my research work. -
Adaptive Color Space Model Based on Dominant Colors for Image and Video
Adaptive color space model based on dominant colors for image and video... Madenda S., Darmayantie A. Adaptive color space model based on dominant colors for image and video compression performance improvement S. Madenda 1, A. Darmayantie 1 1 Computer Engineering Department, Gunadarma University, Jl. Margonda Raya. No. 100, Depok – Jawa Barat, Indonesia Abstract This paper describes the use of some color spaces in JPEG image compression algorithm and their impact in terms of image quality and compression ratio, and then proposes adaptive color space models (ACSM) to improve the performance of lossy image compression algorithm. The proposed ACSM consists of, dominant color analysis algorithm and YCoCg color space family. The YCoCg color space family is composed of three color spaces, which are YCcCr, YCpCg and YCyCb. The dominant colors analysis algorithm is developed which enables to automatically select one of the three color space models based on the suitability of the dominant colors contained in an image. The experimental results using sixty test images, which have varying colors, shapes and textures, show that the proposed adaptive color space model provides improved performance of 3 % to 10 % better than YCbCr, YDbDr, YCoCg and YCgCo-R color spaces family. In addition, the YCoCg color space family is a discrete transformation so its digital electronic implementation requires only two adders and two subtractors, both for forward and inverse conversions. Keywords: colors dominant analysis, adaptive color space, image compression, image quality, compression ratio. Citation: Madenda S, Darmayantie A. Adaptive color space model based on dominant colors for image and video compression performance improvement. Computer Optics 2021; 45(3): 405- 417. -
General Purpose Processors And
Benchmarking Microprocessors for High-End Signal Processing Stephen Paavola SKY Computers Phone: 978-250-1920 Email Address: [email protected] There are a number of general-purpose methodology was chosen because the microprocessor architectures which, while not benchmark is intended to measure bandwidth, designed for high-end signal processing, might not computational performance. provide the processing performance required for complex radars, signal intelligence and other As might be expected, the 800 MHz Broadcom demanding applications. But how well does each BCM1250, with the lowest operating frequency really perform as a digital signal processor? of the group, also has the lowest bandwidth, whether the access is to L1 or L2 cache. Despite To answer this question, some simple the fact that this dual-processor chip has benchmarks were run on a 1GHz Freescale integrated memory controllers, it still lags behind 7447 PowerPC, 1.8 GHz IBM 970 PowerPC, 1.8 the other processors when accessing DRAM. GHz AMD Opteron and 800 MHz Broadcom MIPS-based 1250 chip. Memory Read Bandwidth The bottom line of this set of benchmarks is that 20.0 the PowerPC with AltiVec produces impressive 18.0 computational performance compared to the 16.0 14.0 other processors considered. Now that IBM is s) / B 12.0 1.8 GHz Opteron shipping its PowerPC 970 with AltiVec, there is a G 1 GHz 7447 h ( t 10.0 d 1.8 GHz 970 processor alternative that addresses the i w 8.0 800 MHz Broadcom d memory bandwidth limitations of the 7447. n 6.0 Ba Yet, despite the strengths of AltiVec, the 4.0 benchmarks revealed that the alternative 2.0 0.0 1 2 4 8 6 2 4 8 6 2 2 processors offer some interesting capabilities for 1 3 6 2 24 48 96 9 1 25 51 0 0 0 1 2 4 81 particular types of signal processing. -
CORDIC Co-Processor Architecture for Digital Signal Processing Applications
A Fast CORDIC Co-Processor Architecture for Digital Signal Processing Applications Javier O. Giacomantone, Horacio Villagarcía Wanza, Oscar N. Bria CeTADΗ – Fac. de Ingeniería – UNLP [email protected] Abstract The coordinate rotational digital computer (CORDIC) is an arithmetic algorithm, which has been used for arithmetic units in the fast computing of elementary functions and for special purpose hardware in programmable logic devices. This paper describes a classification method that can be used for the possible applications of the algorithm and the architecture that is required for fast hardware computing of the algorithm. Keywords: Computer Architectures, CORDIC, Computer Arithmetic, Hardware Algorithms, Digital Signal Processing Applications. Η Centro de Técnicas Analógico-Digitales. Director: Ing. Antonio A. Quijano. A Fast CORDIC Co-Processor Architecture for Digital Signal Processing Applications Javier O. Giacomantone, Horacio Villagarcía Wanza, Oscar N. Bria CeTADΗ – Fac. de Ingeniería – UNLP [email protected] Abstract The coordinate rotational digital computer (CORDIC) is an arithmetic algorithm, which has been used for arithmetic units in the fast computing of elementary functions and for special purpose hardware in programmable logic devices. This paper describes a classification method that can be used for the possible applications of the algorithm and the architecture that is required for fast hardware computing of the algorithm. Keywords: Computer Architectures, CORDIC, Computer Arithmetic, Hardware Algorithms, Digital Signal Processing Applications. I. Introduction The Coordinate Rotation Digital Computer (CORDIC) is an arithmetic technique, which makes it possible to perform two dimensional rotations using simple hardware components. The algorithm can be used to evaluate elementary functions such as cosine, sine, arctangent, sinh, cosh, tanh, ln and exp.