Open Rachelgutierrez Masters.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Open Rachelgutierrez Masters.Pdf The Pennsylvania State University The Graduate School ENVIRONMENTAL AND RADAR CHARACTERISTICS OF GARGANTUAN HAIL-PRODUCING STORMS A Thesis in Meteorology and Atmospheric Science by Rachel E. Gutierrez c 2019 Rachel E. Gutierrez Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science December 2019 The thesis of Rachel E. Gutierrez was reviewed and approved∗ by the following: Matthew Kumjian Associate Professor of Meteorology Thesis Advisor Paul Markowski Professor of Meteorology Associate Head, Graduate Program in Meteorology Anthony Didlake Assistant Professor of Meteorology David J. Stensrud Professor of Meteorology Department Head ∗Signatures are on file in the Graduate School. ii Abstract Storms that produce gargantuan hail (≥ 6 inches or 15 centimeters in maximum dimension), although seemingly rare, can cause extensive damage to property and infrastructure and cause injury to humans and animals. Additionally, gargantuan hail-producing storms can be responsible for billions of dollars worth of insured losses. Currently, we are limited in our ability to accurately predict gargantuan hail and detect gargantuan hail on radar. We analyze the environments and radar characteristics of gargantuan hail-producing storms to define the parameter space of environments in which gargantuan hail occurs, and compare environmental pa- rameters and radar signatures in these storms to other sizes of hail. We find that traditionally used environmental parameters used for hail prediction, such as most unstable convective available potential energy (MUCAPE), may not be able to distinguish between gargantuan hail environments and environments that produce smaller hail. Moreover, radar reflectivity does not appear to be able to distinguish among hail sizes. However, inferred rotational velocities within the hail growth region of the mesocyclone of storms that produce gargantuan hail are significantly stronger than the rotational velocities found for smaller hail. iii Table of Contents List of Figures vi List of Tables ix Acknowledgments x Chapter 1 Introduction 1 1.1 Motivation . 1 1.2 Background . 4 Chapter 2 Data 10 2.1 Cases . 10 2.2 Methods of Analysis . 12 2.2.1 Environments . 12 2.2.2 Radar . 15 Chapter 3 Results 18 3.1 Environmental Characteristics . 18 3.1.1 Synoptic Overview . 18 3.1.2 Environmental Parameters Analyses . 18 3.1.3 Comparison to Other Hail Environments . 19 3.1.4 Storm Motion Analysis . 25 3.1.5 0 oC Wet Bulb Heights . 27 3.1.6 Lapse Rates . 28 3.1.7 Significant Hail Parameter (SHIP) . 29 3.2 Radar Characteristics . 30 3.2.1 Analysis of ZH and HDR Swaths . 30 iv 3.2.2 Vertical Profiles of Reflectivity . 33 3.2.3 Bounded Weak Echo Region Area Analysis . 34 3.2.4 Rotational Velocity Analysis . 36 Chapter 4 Conclusions 48 Bibliography 53 v List of Figures 1.1 Examples of gargantuan hailstones. (a) and (b) are gargantuan hailstones from Wagner and Dante, SD, (US Department of Com- merce, NOAA, 2007) (c) is the gargantuan hailstone from Wichita, KS, (US Department of Commerce, NOAA, 2010b)(d) is the gar- gantuan hailstone from Vivian, SD, (US Department of Commerce, NOAA, 2010a) and (e) is the gargantuan hailstone from Villa Carlos Paz in Argentina (courtesy of Victoria Druetta). 2 1.2 Examples of gargantuan hail damage. (a) shows a hole in the roof of a home caused by gargantuan hail in Nisland, SD (Brunner, 2015). (b) and (c) show craters in the ground caused by gargantuan hail in Vivian, SD and Dante, SD, respectively (US Department of Commerce, NOAA, 2010a, 2007). 3 2.1 Map of all USA gargantuan hail cases (the Argentina gargantuan hail case is not included). 11 2.2 Sunray case soundings without (left) and with (right) the linear interpolation correction. 14 2.3 Comparison of the real environmental soundings to the RUC/RAP linear interpolated corrected soundings for the El Reno case. The wind barbs are of the real environmental winds. The bright hodo- graph colors represent the RUC/RAP model winds and the dark hodograph colors represent the real environmental winds. 16 2.4 Same as Figure 2.3 but for the Nisland case. 17 3.1 RAP generated soundings for all gargantuan hail cases with the linear interpolation correction applied to the surface T and Td. 20 3.2 RAP generated soundings for all gargantuan hail cases with the linear interpolation correction applied to the surface T and Td. 21 3.3 MUCAPE versus hailsize for the gargantuan hail cases. Brighter colored dots represent larger hail sizes. 22 3.4 MUCAPE versus 0{6 km Bulk Shear for the gargantuan hail cases. 22 vi 3.5 MUCAPE versus 0{3km SRH for the gargantuan hail cases. 23 3.6 MUCAPE versus hailsize for both the SPLASH and gargantuan hail cases. Results from Blair et al. (2017) are also shown. The whiskers are estimated from Figures 10 and 11 from Blair et al. (2017). 24 3.7 MUCAPE versus 0{6 km Bulk Shear for both the SPLASH and gargantuan hail cases. Results from Blair et al. (2017) are also shown. 25 3.8 MUCAPE versus 0{3 km SRH for both the SPLASH and gargan- tuan hail cases. 26 3.9 2D Kernel Density Estimate of the tracked storm motion minus the calculated RM Bunkers storm motion. The shading represents the probability density. 27 3.10 Boxplots of the 700{500 hPa and 850{700 hPa lapse rates for all gargantuan hail cases. The teal bar is the median, the magenta triangle is the mean, the box is the interquartile range, and the whiskers are the most extreme but non-outlier point. 30 3.11 Boxplot of the Significant Hail Parameter (SHIP) for all gargantuan hail cases. The teal bar is the median, the magenta triangle is the mean, the box is the interquartile range, and the whiskers are the most extreme but non-outlier point. 31 3.12 Maximum reflectivity swaths for all gargantuan hail cases. The large black dot on the swath represents the location of the gargan- tuan hailfall. 38 3.13 Kernel Density Estimate of the maximum reflectivity to occur at the gargantuan hailfall location (blue) and the maximum reflectivity to occur anywhere in the storm (magenta). The bandwidth used to create this was 2.5 dB. 39 3.14 Maximum hail differential reflectivity (HDR) swaths for the gargan- tuan hail cases that had dual-pol radar. 40 3.15 Kernel Density Estimate of the maximum hail differential reflectiv- ity to occur at the gargantuan hailfall location (green) and the max- imum hail differential reflectivity to occur anywhere in the storm (orange). The bandwidth used to create this was 4 dB. 41 3.16 Vertical profile of reflectivity for a 5 km x 5 km grid box centered on the gargantuan hailfall location as a function of temperature. The teal bars are medians, the magenta triangles are means, and the boxes are the interquartile ranges. Each box represents one elevation from one storm. 42 vii 3.17 Results from Ortega (2018) for non-severe hail, severe hail, and significantly severe hail (left) and our results for gargantuan hail (right). Our results show the median reflectivity for 5oC increments. Here, we see that gargantuan hail has similar if not slightly lower values of reflectivity for each elevation when compared to Ortega (2018). 43 3.18 Example showing the BWER area algorithm using the El Reno case. Here, one radial through the BWER is shown. (a) is the reflectivity along that radial, (b) is the moving average of that reflectivity, and (c) is the standard deviation of that moving average. The orange dots signify > 2 dB in the standard deviation of the moving average of reflectivity. This 2-dB flag captures the BWER bounds (significant dip in reflectivity and return to high reflectivity) for each radial throughout the BWER. 44 3.19 Examples of the largest BWERs for each case within the hail growth region. The black dot represents the gargantuan hailfall location. The Argentina BWER is not shown here. 45 3.20 Bounded Weak Echo Region (BWER) areas within the hail growth region before, during, and after the gargantuan hailfall. The teal bars are the medians, the magenta triangles are the means, the boxes are the interquartile range, the whiskers are the most extreme but non-outlier point, and the circles are the outliers. 46 3.21 Rotational velocities within the hail growth region before, during, and after the time of gargantuan hailfall. The teal bars are the medians, the magenta triangles are the means, the boxes are the interquartile range, the whiskers are the most extreme but non- outlier point, and the circles are the outliers. 46 3.22 Comparison of Blair et al. (2011) results (left) for hail ≥ 4 inches in maximum dimension (giant hail) to our results (right) for hail ≥ 6 inches in maximum dimension (gargantuan hail). The interquartile range and median are known and the whiskers are estimated from Blair et al. (2011). Our results show that there is a significant increase in rotational velocities for gargantuan hail from giant hail. 47 viii List of Tables 1.1 Typical hail sizing convention (Storm Prediction Center, 2019; Blair et al., 2011). Here, size refers to the hailstone's maximum dimen- sion. We propose a new size category, \gargantuan," that includes hailstones ≥ 6 inches or 15 centimeters in maximum dimension. 2 2.1 Gargantuan hail cases that are used in this study. Here, \hail size" refers to the hailstone's maximum dimension. 11 3.1 Lowest height above ground level (AGL) of the 0oC wet bulb tem- perature. 28 ix Acknowledgments This thesis would not be possible without the contributions from the following people. First of all, I would like to thank my advisor, Dr.
Recommended publications
  • 23 Public Reaction to Impact Based Warnings During an Extreme Hail Event in Abilene, Texas
    23 PUBLIC REACTION TO IMPACT BASED WARNINGS DURING AN EXTREME HAIL EVENT IN ABILENE, TEXAS Mike Johnson, Joel Dunn, Hector Guerrero and Dr. Steve Lyons NOAA, National Weather Service, San Angelo, TX Dr. Laura Myers University of Alabama, Tuscaloosa, AL Dr. Vankita Brown NOAA/National Weather Service Headquarters, Silver Spring, MD 1. INTRODUCTION 3. HOW THE PUBLIC REACTED TO THE WARNINGS A powerful, supercell thunderstorm with hail up to the Of the 324 respondents, 86% were impacted by the size of softballs (>10 cm in diameter) and damaging extreme hail event. Listed below are highlighted winds impacted Abilene, Texas, during the Children's responses to some survey questions. Art and Literacy Festival and parade on June 12, 2014. It caused several minor injuries. This storm produced 3.1 Survey question # 3 widespread damage to vehicles, homes, and businesses, costing an estimated $400 million. More People rely on various sources of information when than 200 city vehicles sustained significant damage and making a decision to prepare for hazardous weather Abilene Fire Station #4 was rendered uninhabitable. events. Please indicate the sources that influenced your Giant hail of this magnitude is a rare phenomenon decisions on how to prepare BEFORE this severe (Blair, et al., 2011), but is responsible for a thunderstorm event occurred. disproportionate amount of damage. 1) Local television In support of a larger National Weather Service 2) Websites/social media (NWS) effort, the San Angelo Texas Weather Forecast 3) Wireless alerts/cell phones
    [Show full text]
  • Glossary Compiled with Use of Collier, C
    Glossary Compiled with use of Collier, C. (Ed.): Applications of Weather Radar Systems, 2nd Ed., John Wiley, Chichester 1996 Rinehard, R.E.: Radar of Meteorologists, 3rd Ed. Rinehart Publishing, Grand Forks, ND 1997 DoC/NOAA: Fed. Met. Handbook No. 11, Doppler Radar Meteorological Observations, Part A-D, DoC, Washington D.C. 1990-1992 ACU Antenna Control Unit. AID converter ADC. Analog-to-digitl;tl converter. The electronic device which converts the radar receiver analog (voltage) signal into a number (or count or quanta). ADAS ARPS Data Analysis System, where ARPS is Advanced Regional Prediction System. Aliasing The process by which frequencies too high to be analyzed with the given sampling interval appear at a frequency less than the Nyquist frequency. Analog Class of devices in which the output varies continuously as a function of the input. Analysis field Best estimate of the state of the atmosphere at a given time, used as the initial conditions for integrating an NWP model forward in time. Anomalous propagation AP. Anaprop, nonstandard atmospheric temperature or moisture gradients will cause all or part of the radar beam to propagate along a nonnormal path. If the beam is refracted downward (superrefraction) sufficiently, it will illuminate the ground and return signals to the radar from distances further than is normally associated with ground targets. 282 Glossary Antenna A transducer between electromagnetic waves radiated through space and electromagnetic waves contained by a transmission line. Antenna gain The measure of effectiveness of a directional antenna as compared to an isotropic radiator, maximum value is called antenna gain by convention.
    [Show full text]
  • 2.3 an Analysis of Lightning Holes in a Dfw Supercell Storm Using Total Lightning and Radar Information
    2.3 AN ANALYSIS OF LIGHTNING HOLES IN A DFW SUPERCELL STORM USING TOTAL LIGHTNING AND RADAR INFORMATION Martin J. Murphy* and Nicholas W.S. Demetriades Vaisala Inc., Tucson, Arizona 1. INTRODUCTION simple source density-rate (e.g., number of sources/km2/min) with various grid sizes and A “lightning hole” is a small region within a temporal resolutions. An additional data storm that is relatively free of in-cloud lightning representation method may be obtained by first activity. This feature was first discovered in aggregating the sources according to which severe supercell storms in Oklahoma during branch and flash produced them and then MEaPRS in 1998 (MacGorman et al. 2002). The looking at the number of grid cells “touched” by feature was identified through high-resolution the flash. This concept, which we refer to as three-dimensional observations of total (in-cloud “flash extent density” (see also Lojou and and cloud-to-ground (CG)) lightning activity by Cummins, this conference), is illustrated in the Lightning Mapping Array (LMA; Rison et al. Figure 1. The figure shows the branches of a 1999). It is generally thought that lightning holes flash. At each branch division, as well as at are to lightning information what the bounded each bend or kink in any single branch, a VHF weak echo region (BWER) is to radar data. That source was observed. Rather than counting all is, lightning holes are affiliated with the of the sources within each grid square to extremely strong updrafts unique to severe produce source density, we only count each storms.
    [Show full text]
  • Mt417 – Week 10
    Mt417 – Week 10 Use of radar for severe weather forecasting Single Cell Storms (pulse severe) • Because the severe weather happens so quickly, these are hard to warn for using radar • Main Radar Signatures: i) Maximum reflectivity core developing at higher levels than other storms ii) Maximum top and maximum reflectivity co- located iii) Rapidly descending core iv) pure divergence or convergence in velocity data Severe cell has its max reflectivity core higher up Z With a descending reflectivity core, you’d see the reds quickly heading down toward the ground with each new scan (typically around 5 minutes apart) Small Scale Winds - Divergence/Convergence - Divergent Signature Often seen at storm top level or near the Note the position of the radar relative to the ground at close velocity signatures. This range to a pulse type is critical for proper storm interpretation of the small scale velocity data. Convergence would show colors reversed Multicells (especially QLCSs– quasi-linear convective systems) • Main Radar Signatures i) Weak echo region (WER) or overhang on inflow side with highest top for the multicell cluster over this area (implies very strong updraft) ii) Strong convergence couplet near inflow boundary Weak Echo Region (left: NWS Western Region; right: NWS JETSTREAM) • Associated with the updraft of a supercell thunderstorm • Strong rising motion with the updraft results in precipitation/ hail echoes being shifted upward • Can be viewed on one radar surface (left) or in the vertical (schematic at right) Crude schematic of
    [Show full text]
  • 12.9 Experimental High-Resolution Wsr-88D Measurements in Severe Storms
    12.9 EXPERIMENTAL HIGH-RESOLUTION WSR-88D MEASUREMENTS IN SEVERE STORMS Rodger Brown1, Bradley Flickinger1,2, Eddie Forren1,2, David Schultz1,2, Phillip Spencer1,2, Vincent Wood1, and Conrad Ziegler1 1 NOAA, National Severe Storms Laboratory, Norman, OK 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK 1. INTRODUCTION resolution to current-resolution measurements in mesocyclones, we present some of the simulation Through use of Doppler velocity simulations, results of Wood et al. (2001). A comparison of Wood et al. (2001) and Brown et al. (2002) have simulated Doppler radar scans across a shown that stronger Doppler velocity signatures of mesocyclone for 1.0o and 0.5o azimuthal sampling mesocyclones and tornadoes, respectively, can is shown in Fig. 1. The curves with dots along be obtained when WSR-88D (Weather Surveil- them represent the curves along which Doppler lance Radar–1988 Doppler) measurements are velocity measurements are made. There are two made at azimuthal sampling intervals of 0.5o factors illustrated in Fig. 1 that contribute to instead of the current intervals of 1.0o. In addition, stronger mesocyclone signatures with 0.5o for signatures exceeding a particular Doppler azimuthal sampling. First, the peaks of the meas- velocity threshold, the signatures are detectable urement curve in Fig. 1b are closer to the pointed 50% farther in range using 0.5o azimuthal peaks of the “true” curve being sampled by the sampling. radar than in Fig. 1a. The peaks are closer To help substantiate the simulation results, because the radar beam has to scan only half the the National Severe Storms Laboratory’s (NSSL) distance in azimuth for 0.5o sampling and testbed WSR-88D radar (KOUN) collected high- therefore there is less smearing of the true curve.
    [Show full text]
  • Fuzzy Rule–Based Approach for Detection of Bounded Weak-Echo Regions in Radar Images
    1304 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOLUME 45 Fuzzy Rule–Based Approach for Detection of Bounded Weak-Echo Regions in Radar Images NIKHIL R. PAL Electronics and Communication Sciences Unit, Indian Statistical Institute, Calcutta, India ACHINTYA K. MANDAL Gitanjali Net, Visva-Bharati University, Santiniketan, India SRIMANTA PAL AND JYOTIRMAY DAS Electronics and Communication Sciences Unit, Indian Statistical Institute, Calcutta, India V. LAKSHMANAN National Severe Storms Laboratory, University of Oklahoma, Norman, Oklahoma (Manuscript received 4 February 2005, in final form 27 February 2006) ABSTRACT A method for the detection of a bounded weak-echo region (BWER) within a storm structure that can help in the prediction of severe weather phenomena is presented. A fuzzy rule–based approach that takes care of the various uncertainties associated with a radar image containing a BWER has been adopted. The proposed technique automatically finds some interpretable (fuzzy) rules for classification of radar data related to BWER. The radar images are preprocessed to find subregions (or segments) that are suspected candidates for BWERs. Each such segment is classified into one of three possible cases: strong BWER, marginal BWER, or no BWER. In this regard, spatial properties of the data are being explored. The method has been tested on a large volume of data that are different from the training set, and the performance is found to be very satisfactory. It is also demonstrated that an interpretation of the linguistic rules extracted by the system described herein can provide important characteristics about the underlying process. 1. Introduction interaction between the updrafts and the vertically sheared environment strongly controls the degree of Supercell thunderstorms are perhaps the most vio- the organization of a storm and the severity of convec- lent of all thunderstorm types and are capable of pro- tion.
    [Show full text]
  • Supercell Radar Signatures
    Supercell Radar Signatures OBJECTIVES 1. The student will understand how to use WxScope to access current and archived radar data. 2. The student will understand the reflectivity values frequently associated with hail and heavy rain. 3. The student will understand reflectivity patterns associated with hook echoes and tornadic circulations. 4. The student will understand the fundamentals of supercell storm motion. 5. Given a series of Doppler images from a supercell, the student will be able to identify the hook echo, presence of hail, heavy rain, and tornadic circulation. 6. The student will be able to predict storm locations relative to current radar images. 7. The student will be able to compare predictions to actual storm locations to determine if the storm moved as expected, moved right or left of predicted path. PREREQUISITES MATERIALS Basic understanding of WeatherScope. Computer Completion of Understanding Weather Radar WxScope software lecture in the OCS EarthStorm series Archived radar data VOCABULARY Hook echo: A pendant-shaped echo usually toward the right rear of the echo on a radar screen that indicates the presence of a mesocyclone and possible presence of a tornado. Radar: An electronic instrument used to detect objects (such as precipitation) by their ability to reflect and scatter microwaves back to a receiver. Reflectivity: A measure of the fraction of radiation reflected by a given surface; defined as a ratio of the radiant energy reflected to the total that is incident upon a surface. Generally “reflectivity” is used in place of the phrase “radar reflectivity factor” or “equivalent radar reflectivity factor.” Supercell: A large, long-lived (up to several hours) cell consisting of one quasi-steady updraft- downdraft couplet that is generally capable or producing the most sever weather (tornadoes, high winds, and giant hail).
    [Show full text]
  • Convective Storm Structure and Evolution Presented by the Warning Decision Training Branch
    Distance Learning Operations Course IC 5.7: Convective Storm Structure and Evolution Presented by the Warning Decision Training Branch Version: 0308.2 Distance Learning Operations Course Table of Contents Introduction ..................................................................................................... 1 Objectives ................................................................................................................................................ 3 Lesson 1....................................................................................................................................3 Lesson 2....................................................................................................................................3 Lesson 3....................................................................................................................................3 Lesson 1: Fundamental Relationships Between Shear and Instability on Convective Storm Structure and Type. ......................................................... 6 Objective 1 ............................................................................................................................................... 6 Effects of Shear .........................................................................................................................6 Objective 2 ............................................................................................................................................... 7 Objective 3 ............................................................................................................................................
    [Show full text]
  • Doppler Radar Meteorological Observations
    U.S. DEPARTMENT OF COMMERCE/ National Oceanic and Atmospheric Administration OFFICE OF THE FEDERAL COORDINATOR FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH FEDERAL METEOROLOGICAL HANDBOOK NO. 11 DOPPLER RADAR METEOROLOGICAL OBSERVATIONS PART B DOPPLER RADAR THEORY AND METEOROLOGY FCM-H11B-2005 Washington, DC December 2005 THE FEDERAL COMMITTEE FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH (FCMSSR) VADM CONRAD C. LAUTENBACHER, JR., USN (RET.) MR. RANDOLPH LYON Chairman, Department of Commerce Office of Management and Budget DR. SHARON HAYS (Acting) MR. CHARLES E. KEEGAN Office of Science and Technology Policy Department of Transportation DR. RAYMOND MOTHA MR. DAVID MAURSTAD (Acting) Department of Agriculture Federal Emergency Management Agency Department of Homeland Security BRIG GEN DAVID L. JOHNSON, USAF (RET.) Department of Commerce DR. MARY L. CLEAVE National Aeronautics and Space MR. ALAN SHAFFER Administration Department of Defense DR. MARGARET S. LEINEN DR. ARISTIDES PATRINOS National Science Foundation Department of Energy MR. PAUL MISENCIK DR. MAUREEN MCCARTHY National Transportation Safety Board Science and Technology Directorate Department of Homeland Security MR. JAMES WIGGINS U.S. Nuclear Regulatory Commission DR. MICHAEL SOUKUP Department of the Interior DR. LAWRENCE REITER Environmental Protection Agency MR. RALPH BRAIBANTI Department of State MR. SAMUEL P. WILLIAMSON Federal Coordinator MR. JAMES B. HARRISON, Executive Secretary Office of the Federal Coordinator for Meteorological Services and Supporting Research THE INTERDEPARTMENTAL COMMITTEE FOR METEOROLOGICAL SERVICES AND SUPPORTING RESEARCH (ICMSSR) MR. SAMUEL P. WILLIAMSON, Chairman MS. LISA BEE Federal Coordinator Federal Aviation Administration Department of Transportation MR. THOMAS PUTERBAUGH Department of Agriculture DR. JONATHAN M. BERKSON United States Coast Guard MR. JOHN E. JONES, JR. Department of Homeland Security Department of Commerce MR.
    [Show full text]
  • Acronyms and Abbreviations
    ACRONYMS AND ABBREVIATIONS AGL - Above Ground Level AP - Anomalous Propagation ARL -Above Radar Level AVSET - Automated Volume Scan Evaluation and Termination AWIPS - Advanced Weather Interactive Processing System BE – Book End as in Book End Vortex BWER - Bounded Weak Echo Region CAPE - Conditional Available Potential Energy CIN – Convective Inhibition CC – Correlation Coefficient Dual Pol Product CR -Composite Reflectivity Product CWA -County Warning Area DP – Dual Pol dBZ - Radar Reflectivity Factor DCAPE - Downdraft Conditional Available Potential Energy DCZ - Deep Convergence Zone EL – Equilibrium Level ET -Echo Tops Product ETC - Extratropical Cyclone FAR - False Alarm Ratio FFD – Forward Flank Downdraft FFG – Flash Flood Guidance GTG – Gate-To-Gate HP - High Precipitation supercell (storm) HDA -Hail Detection Algorithm LCL -Lifting Condensation Level LEWP -Line Echo Wave Pattern LP - Low Precipitation Supercell (storm) MARC - Mid Altitude Radial Convergence MCC - Mesoscale Convective Complex MCS - Mesoscale Convective System MCV – Mesoscale Convective Vortex MESO -Mesocyclone MEHS -Maximum Expected Hail Size OHP -One-Hour Rainfall Accumulation Product POSH -Probability of Severe Hail QLCS - Quasi Linear Convective Systems R - Rainfall Rate in Z-R relationship RF – Range Folding RFD - Rear Flank Downdraft RIJ - Rear Inflow Jet RIN – Rear Inflow Notch SAILS - Supplemental Adaptive Intra-Volume Low-Level Scan SCP – Supercell Composite Parameter SRH – Storm Relative Helicity SRM -Storm Relative Mean Radial Velocity STP –Significant
    [Show full text]
  • P5.19 the Four Large Hail Assessment Techniques in Severe Thunderstorm Warning Operations in Australia
    P5.19 THE FOUR LARGE HAIL ASSESSMENT TECHNIQUES IN SEVERE THUNDERSTORM WARNING OPERATIONS IN AUSTRALIA Harald Richter* and Roger B. Deslandes Bureau of Meteorology Training Centre, Melbourne, Australia 1289K, Melbourne VIC 3001, Australia; e-mail: 1. INTRODUCTION [email protected] associating the melting potential with the In Australia, severe thunderstorms are height of some downdraft-representing freezing defined by the occurrence of one or more of the level. We will refer some of the hail diagnosis following four phenomena: 1. hail greater than 2 techniques to follow back to the conceptual cm in diameter, 2. wind gusts in excess of 48 underpinnings we just outlined. knots, 3. tornadoes and 4. heavy rainfall In sections 2-5 this paper will step through conducive to flash flooding. This paper will brief descriptions of the four individual hail focus on the severe hail criterion and the assessment techniques. associated demand on warning forecasters to diagnose whether a given thunderstorm is likely to produce hail in excess of 2 cm in diameter. 2. HAIL NOMOGRAM Conventional radar base reflectivity and base velocity signatures do generally not The first severe hail assessment tool in Australia correspond well with the occurrence of large is based on a hail climatology for the Sydney hail, especially near the 2 cm hail size severity region where hail size reports are plotted as a threshold. The Australian Bureau of function of two parameters: the corresponding o Meteorology (ABoM) has therefore adopted a 50 dBZ echo top heights as seen by the 2 beam “preponderance of evidence” approach based width Sydney S-band radar and the on four hail recognition techniques: 1.
    [Show full text]
  • An Analysis of Lightning Holes in a Dfw Supercell Storm Using Total Lightning and Radar Information
    2.3 AN ANALYSIS OF LIGHTNING HOLES IN A DFW SUPERCELL STORM USING TOTAL LIGHTNING AND RADAR INFORMATION Martin J. Murphy* and Nicholas W.S. Demetriades Vaisala Inc., Tucson, Arizona 1. INTRODUCTION simple source density-rate (e.g., number of sources/km2/min) with various grid sizes and A “lightning hole” is a small region within a temporal resolutions. An additional data storm that is relatively free of in-cloud lightning representation method may be obtained by first activity. This feature was first discovered in aggregating the sources according to which severe supercell storms in Oklahoma during branch and flash produced them and then MEaPRS in 1998 (MacGorman et al. 2002). The looking at the number of grid cells “touched” by feature was identified through high-resolution the flash. This concept, which we refer to as three-dimensional observations of total (in-cloud “flash extent density” (see also Lojou and and cloud-to-ground (CG)) lightning activity by Cummins, this conference), is illustrated in the Lightning Mapping Array (LMA; Rison et al. Figure 1. The figure shows the branches of a 1999). It is generally thought that lightning holes flash. At each branch division, as well as at are to lightning information what the bounded each bend or kink in any single branch, a VHF weak echo region (BWER) is to radar data. That source was observed. Rather than counting all is, lightning holes are affiliated with the of the sources within each grid square to extremely strong updrafts unique to severe produce source density, we only count each storms.
    [Show full text]