Acronyms and Abbreviations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
23 Public Reaction to Impact Based Warnings During an Extreme Hail Event in Abilene, Texas
23 PUBLIC REACTION TO IMPACT BASED WARNINGS DURING AN EXTREME HAIL EVENT IN ABILENE, TEXAS Mike Johnson, Joel Dunn, Hector Guerrero and Dr. Steve Lyons NOAA, National Weather Service, San Angelo, TX Dr. Laura Myers University of Alabama, Tuscaloosa, AL Dr. Vankita Brown NOAA/National Weather Service Headquarters, Silver Spring, MD 1. INTRODUCTION 3. HOW THE PUBLIC REACTED TO THE WARNINGS A powerful, supercell thunderstorm with hail up to the Of the 324 respondents, 86% were impacted by the size of softballs (>10 cm in diameter) and damaging extreme hail event. Listed below are highlighted winds impacted Abilene, Texas, during the Children's responses to some survey questions. Art and Literacy Festival and parade on June 12, 2014. It caused several minor injuries. This storm produced 3.1 Survey question # 3 widespread damage to vehicles, homes, and businesses, costing an estimated $400 million. More People rely on various sources of information when than 200 city vehicles sustained significant damage and making a decision to prepare for hazardous weather Abilene Fire Station #4 was rendered uninhabitable. events. Please indicate the sources that influenced your Giant hail of this magnitude is a rare phenomenon decisions on how to prepare BEFORE this severe (Blair, et al., 2011), but is responsible for a thunderstorm event occurred. disproportionate amount of damage. 1) Local television In support of a larger National Weather Service 2) Websites/social media (NWS) effort, the San Angelo Texas Weather Forecast 3) Wireless alerts/cell phones -
From Improving Tornado Warnings: from Observation to Forecast
Improving Tornado Warnings: from Observation to Forecast John T. Snow Regents’ Professor of Meteorology Dean Emeritus, College of Atmospheric and Geographic Sciences, The University of Oklahoma Major contributions from: Dr. Russel Schneider –NOAA Storm Prediction Center Dr. David Stensrud – NOAA National Severe Storms Laboratory Dr. Ming Xue –Center for Analysis and Prediction of Storms, University of Oklahoma Dr. Lou Wicker –NOAA National Severe Storms Laboratory Hazards Caucus Alliance Briefing Tornadoes: Understanding how they develop and providing early warning 10:30 am – 11:30 am, Wednesday, 21 July 2010 Senate Capitol Visitors Center 212 Each Year: ~1,500 tornadoes touch down in the United States, causing over 80 deaths, 100s of injuries, and an estimated $1.1 billion in damages Statistics from NOAA Storm Prediction Center Supercell –A long‐lived rotating thunderstorm the primary type of thunderstorm producing strong and violent tornadoes Present Warning System: Warn on Detection • A Warning is the culmination of information developed and distributed over the preceding days sequence of day‐by‐day forecasts identifies an area of high threat •On the day, storm spotters deployed; radars monitor formation, growth of thunderstorms • Appearance of distinct cloud or radar echo features tornado has formed or is about to do so Warning is generated, distributed Present Warning System: Warn on Detection Radar at 2100 CST Radar at 2130 CST with Warning Thunderstorms are monitored using radar A warning is issued based on the detected and -
A Study of Synoptic-Scale Tornado Regimes
Garner, J. M., 2013: A study of synoptic-scale tornado regimes. Electronic J. Severe Storms Meteor., 8 (3), 1–25. A Study of Synoptic-Scale Tornado Regimes JONATHAN M. GARNER NOAA/NWS/Storm Prediction Center, Norman, OK (Submitted 21 November 2012; in final form 06 August 2013) ABSTRACT The significant tornado parameter (STP) has been used by severe-thunderstorm forecasters since 2003 to identify environments favoring development of strong to violent tornadoes. The STP and its individual components of mixed-layer (ML) CAPE, 0–6-km bulk wind difference (BWD), 0–1-km storm-relative helicity (SRH), and ML lifted condensation level (LCL) have been calculated here using archived surface objective analysis data, and then examined during the period 2003−2010 over the central and eastern United States. These components then were compared and contrasted in order to distinguish between environmental characteristics analyzed for three different synoptic-cyclone regimes that produced significantly tornadic supercells: cold fronts, warm fronts, and drylines. Results show that MLCAPE contributes strongly to the dryline significant-tornado environment, while it was less pronounced in cold- frontal significant-tornado regimes. The 0–6-km BWD was found to contribute equally to all three significant tornado regimes, while 0–1-km SRH more strongly contributed to the cold-frontal significant- tornado environment than for the warm-frontal and dryline regimes. –––––––––––––––––––––––– 1. Background and motivation As detailed in Hobbs et al. (1996), synoptic- scale cyclones that foster tornado development Parameter-based and pattern-recognition evolve with time as they emerge over the central forecast techniques have been essential and eastern contiguous United States (hereafter, components of anticipating tornadoes in the CONUS). -
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
Extratropical Cyclones and Anticyclones
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns. -
Squall Lines: Meteorology, Skywarn Spotting, & a Brief Look at the 18
Squall Lines: Meteorology, Skywarn Spotting, & A Brief Look At The 18 June 2010 Derecho Gino Izzi National Weather Service, Chicago IL Outline • Meteorology 301: Squall lines – Brief review of thunderstorm basics – Squall lines – Squall line tornadoes – Mesovorticies • Storm spotting for squall lines • Brief Case Study of 18 June 2010 Event Thunderstorm Ingredients • Moisture – Gulf of Mexico most common source locally Thunderstorm Ingredients • Lifting Mechanism(s) – Fronts – Jet Streams – “other” boundaries – topography Thunderstorm Ingredients • Instability – Measure of potential for air to accelerate upward – CAPE: common variable used to quantify magnitude of instability < 1000: weak 1000-2000: moderate 2000-4000: strong 4000+: extreme Thunderstorms Thunderstorms • Moisture + Instability + Lift = Thunderstorms • What kind of thunderstorms? – Single Cell – Multicell/Squall Line – Supercells Thunderstorm Types • What determines T-storm Type? – Short/simplistic answer: CAPE vs Shear Thunderstorm Types • What determines T-storm Type? (Longer/more complex answer) – Lot we don’t know, other factors (besides CAPE/shear) include • Strength of forcing • Strength of CAP • Shear WRT to boundary • Other stuff Thunderstorm Types • Multi-cell squall lines most common type of severe thunderstorm type locally • Most common type of severe weather is damaging winds • Hail and brief tornadoes can occur with most the intense squall lines Squall Lines & Spotting Squall Line Terminology • Squall Line : a relatively narrow line of thunderstorms, often -
Glossary Compiled with Use of Collier, C
Glossary Compiled with use of Collier, C. (Ed.): Applications of Weather Radar Systems, 2nd Ed., John Wiley, Chichester 1996 Rinehard, R.E.: Radar of Meteorologists, 3rd Ed. Rinehart Publishing, Grand Forks, ND 1997 DoC/NOAA: Fed. Met. Handbook No. 11, Doppler Radar Meteorological Observations, Part A-D, DoC, Washington D.C. 1990-1992 ACU Antenna Control Unit. AID converter ADC. Analog-to-digitl;tl converter. The electronic device which converts the radar receiver analog (voltage) signal into a number (or count or quanta). ADAS ARPS Data Analysis System, where ARPS is Advanced Regional Prediction System. Aliasing The process by which frequencies too high to be analyzed with the given sampling interval appear at a frequency less than the Nyquist frequency. Analog Class of devices in which the output varies continuously as a function of the input. Analysis field Best estimate of the state of the atmosphere at a given time, used as the initial conditions for integrating an NWP model forward in time. Anomalous propagation AP. Anaprop, nonstandard atmospheric temperature or moisture gradients will cause all or part of the radar beam to propagate along a nonnormal path. If the beam is refracted downward (superrefraction) sufficiently, it will illuminate the ground and return signals to the radar from distances further than is normally associated with ground targets. 282 Glossary Antenna A transducer between electromagnetic waves radiated through space and electromagnetic waves contained by a transmission line. Antenna gain The measure of effectiveness of a directional antenna as compared to an isotropic radiator, maximum value is called antenna gain by convention. -
Downloaded 09/30/21 06:43 PM UTC JUNE 1996 MONTEVERDI and JOHNSON 247
246 WEATHER AND FORECASTING VOLUME 11 A Supercell Thunderstorm with Hook Echo in the San Joaquin Valley, California JOHN P. MONTEVERDI Department of Geosciences, San Francisco State University, San Francisco, California STEVE JOHNSON Association of Central California Weather Observers, Fresno, California (Manuscript received 30 January 1995, in ®nal form 9 February 1996) ABSTRACT This study documents a damaging supercell thunderstorm that occurred in California's San Joaquin Valley on 5 March 1994. The storm formed in a ``cold sector'' environment similar to that documented for several other recent Sacramento Valley severe thunderstorm events. Analyses of hourly subsynoptic surface and radar data suggested that two thunderstorms with divergent paths developed from an initial echo that had formed just east of the San Francisco Bay region. The southern storm became severe as it ingested warmer, moister boundary layer air in the south-central San Joaquin Valley. A well-developed hook echo with a 63-dBZ core was observed by a privately owned 5-cm radar as the storm passed through the Fresno area. Buoyancy parameters and ho- dograph characteristics were obtained both for estimated conditions for Fresno [on the basis of a modi®ed morning Oakland (OAK) sounding] and for the actual storm environment (on the basis of a radiosonde launched from Lemoore Naval Air Station at about the time of the storm's passage through the Fresno area). Both the estimated and actual hodographs essentially were straight and suggested storm splitting. Although the actual CAPE was similar to that which was estimated, the observed magnitude of the low-level shear was considerably greater than the estimate. -
Meteorology – Lecture 19
Meteorology – Lecture 19 Robert Fovell [email protected] 1 Important notes • These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his “Meteorology” course, published by The Great Courses (TGC). Unless otherwise identified, they were created by RGF. • In some cases, the figures employed in the course video are different from what I present here, but these were the figures I provided to TGC at the time the course was taped. • These figures are intended to supplement the videos, in order to facilitate understanding of the concepts discussed in the course. These slide shows cannot, and are not intended to, replace the course itself and are not expected to be understandable in isolation. • Accordingly, these presentations do not represent a summary of each lecture, and neither do they contain each lecture’s full content. 2 Animations linked in the PowerPoint version of these slides may also be found here: http://people.atmos.ucla.edu/fovell/meteo/ 3 Mesoscale convective systems (MCSs) and drylines 4 This map shows a dryline that formed in Texas during April 2000. The dryline is indicated by unfilled half-circles in orange, pointing at the more moist air. We see little T contrast but very large TD change. Dew points drop from 68F to 29F -- huge decrease in humidity 5 Animation 6 Supercell thunderstorms 7 The secret ingredient for supercells is large amounts of vertical wind shear. CAPE is necessary but sufficient shear is essential. It is shear that makes the difference between an ordinary multicellular thunderstorm and the rotating supercell. The shear implies rotation. -
A 10-Year Radar-Based Climatology of Mesoscale Convective System Archetypes and Derechos in Poland
AUGUST 2020 S U R O W I E C K I A N D T A S Z A R E K 3471 A 10-Year Radar-Based Climatology of Mesoscale Convective System Archetypes and Derechos in Poland ARTUR SUROWIECKI Department of Climatology, University of Warsaw, and Skywarn Poland, Warsaw, Poland MATEUSZ TASZAREK Department of Meteorology and Climatology, Adam Mickiewicz University, Poznan, Poland, and National Severe Storms Laboratory, Norman, Oklahoma, and Skywarn Poland, Warsaw, Poland (Manuscript received 29 December 2019, in final form 3 May 2020) ABSTRACT In this study, a 10-yr (2008–17) radar-based mesoscale convective system (MCS) and derecho climatology for Poland is presented. This is one of the first attempts of a European country to investigate morphological and precipitation archetypes of MCSs as prior studies were mostly based on satellite data. Despite its ubiquity and significance for society, economy, agriculture, and water availability, little is known about the climatological aspects of MCSs over central Europe. Our results indicate that MCSs are not rare in Poland as an annual mean of 77 MCSs and 49 days with MCS can be depicted for Poland. Their lifetime ranges typically from 3 to 6 h, with initiation time around the afternoon hours (1200–1400 UTC) and dissipation stage in the evening (1900–2000 UTC). The most frequent morphological type of MCSs is a broken line (58% of cases), then areal/cluster (25%), and then quasi- linear convective systems (QLCS; 17%), which are usually associated with a bow echo (72% of QLCS). QLCS are the feature with the longest life cycle. -
Template for Electronic Journal of Severe Storms Meteorology
Lyza, A. W., A. W. Clayton, K. R. Knupp, E. Lenning, M. T. Friedlein, R. Castro, and E. S. Bentley, 2017: Analysis of mesovortex characteristics, behavior, and interactions during the second 30 June‒1 July 2014 midwestern derecho event. Electronic J. Severe Storms Meteor., 12 (2), 1–33. Analysis of Mesovortex Characteristics, Behavior, and Interactions during the Second 30 June‒1 July 2014 Midwestern Derecho Event ANTHONY W. LYZA, ADAM W. CLAYTON, AND KEVIN R. KNUPP Department of Atmospheric Science, Severe Weather Institute—Radar and Lightning Laboratories University of Alabama in Huntsville, Huntsville, Alabama ERIC LENNING, MATTHEW T. FRIEDLEIN, AND RICHARD CASTRO NOAA/National Weather Service, Romeoville, Illinois EVAN S. BENTLEY NOAA/National Weather Service, Portland, Oregon (Submitted 19 February 2017; in final form 25 August 2017) ABSTRACT A pair of intense, derecho-producing quasi-linear convective systems (QLCSs) impacted northern Illinois and northern Indiana during the evening hours of 30 June through the predawn hours of 1 July 2014. The second QLCS trailed the first one by only 250 km and approximately 3 h, yet produced 29 confirmed tornadoes and numerous areas of nontornadic wind damage estimated to be caused by 30‒40 m s‒1 flow. Much of the damage from the second QLCS was associated with a series of 38 mesovortices, with up to 15 mesovortices ongoing simultaneously. Many complex behaviors were documented in the mesovortices, including: a binary (Fujiwhara) interaction, the splitting of a large mesovortex in two followed by prolific tornado production, cyclic mesovortexgenesis in the remains of a large mesovortex, and a satellite interaction of three small mesovortices around a larger parent mesovortex. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.