Supercell Radar Signatures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
23 Public Reaction to Impact Based Warnings During an Extreme Hail Event in Abilene, Texas
23 PUBLIC REACTION TO IMPACT BASED WARNINGS DURING AN EXTREME HAIL EVENT IN ABILENE, TEXAS Mike Johnson, Joel Dunn, Hector Guerrero and Dr. Steve Lyons NOAA, National Weather Service, San Angelo, TX Dr. Laura Myers University of Alabama, Tuscaloosa, AL Dr. Vankita Brown NOAA/National Weather Service Headquarters, Silver Spring, MD 1. INTRODUCTION 3. HOW THE PUBLIC REACTED TO THE WARNINGS A powerful, supercell thunderstorm with hail up to the Of the 324 respondents, 86% were impacted by the size of softballs (>10 cm in diameter) and damaging extreme hail event. Listed below are highlighted winds impacted Abilene, Texas, during the Children's responses to some survey questions. Art and Literacy Festival and parade on June 12, 2014. It caused several minor injuries. This storm produced 3.1 Survey question # 3 widespread damage to vehicles, homes, and businesses, costing an estimated $400 million. More People rely on various sources of information when than 200 city vehicles sustained significant damage and making a decision to prepare for hazardous weather Abilene Fire Station #4 was rendered uninhabitable. events. Please indicate the sources that influenced your Giant hail of this magnitude is a rare phenomenon decisions on how to prepare BEFORE this severe (Blair, et al., 2011), but is responsible for a thunderstorm event occurred. disproportionate amount of damage. 1) Local television In support of a larger National Weather Service 2) Websites/social media (NWS) effort, the San Angelo Texas Weather Forecast 3) Wireless alerts/cell phones -
From Improving Tornado Warnings: from Observation to Forecast
Improving Tornado Warnings: from Observation to Forecast John T. Snow Regents’ Professor of Meteorology Dean Emeritus, College of Atmospheric and Geographic Sciences, The University of Oklahoma Major contributions from: Dr. Russel Schneider –NOAA Storm Prediction Center Dr. David Stensrud – NOAA National Severe Storms Laboratory Dr. Ming Xue –Center for Analysis and Prediction of Storms, University of Oklahoma Dr. Lou Wicker –NOAA National Severe Storms Laboratory Hazards Caucus Alliance Briefing Tornadoes: Understanding how they develop and providing early warning 10:30 am – 11:30 am, Wednesday, 21 July 2010 Senate Capitol Visitors Center 212 Each Year: ~1,500 tornadoes touch down in the United States, causing over 80 deaths, 100s of injuries, and an estimated $1.1 billion in damages Statistics from NOAA Storm Prediction Center Supercell –A long‐lived rotating thunderstorm the primary type of thunderstorm producing strong and violent tornadoes Present Warning System: Warn on Detection • A Warning is the culmination of information developed and distributed over the preceding days sequence of day‐by‐day forecasts identifies an area of high threat •On the day, storm spotters deployed; radars monitor formation, growth of thunderstorms • Appearance of distinct cloud or radar echo features tornado has formed or is about to do so Warning is generated, distributed Present Warning System: Warn on Detection Radar at 2100 CST Radar at 2130 CST with Warning Thunderstorms are monitored using radar A warning is issued based on the detected and -
Chapter-5 Doppler Effect
Chapter-5 Doppler Effect Stationary source Stationary observer Moving source Stationary observer Stationary source Moving observer Moving source Moving observer http://www.astro.ubc.ca/~scharein/a311/Sim/doppler/Doppler.html Doppler Effect The Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source of the waves and the observer. The apparent change in frequency f experienced as a result of the Doppler effect is known as the Doppler shift. The value of the Doppler shift increases as the relative velocity v between the source and the observer increases. The Doppler effect applies to all forms of waves. Doppler Effect (Moving Source) http://www.absorblearning.com/advancedphysics/demo/units/040103.html Suppose the source moves at a steady velocity vs towards a stationary observer. The source emits sound wave with frequency f. From the diagram, we can see that the distance between crests is shortened such that ' vs Since = c/f and = 1/f, We get c c v s f ' f f c vs f ' ( ) f c vs Doppler Effect (Moving Observer) Consider an observer moving with velocity vo toward a stationary source S. The source emits a sound wave with frequency f and wavelength = c/f. The velocity of the sound wave relative to the observer is c + vo. c Doppler Shift Consider a source moving towards an observer, the Doppler shift f is c f f ' f ( ) f f c vs f v s f c v s f v If v <<c, then we get s s f c The above equation also applies to a receding source, with vs taking as negative. -
A Study of Synoptic-Scale Tornado Regimes
Garner, J. M., 2013: A study of synoptic-scale tornado regimes. Electronic J. Severe Storms Meteor., 8 (3), 1–25. A Study of Synoptic-Scale Tornado Regimes JONATHAN M. GARNER NOAA/NWS/Storm Prediction Center, Norman, OK (Submitted 21 November 2012; in final form 06 August 2013) ABSTRACT The significant tornado parameter (STP) has been used by severe-thunderstorm forecasters since 2003 to identify environments favoring development of strong to violent tornadoes. The STP and its individual components of mixed-layer (ML) CAPE, 0–6-km bulk wind difference (BWD), 0–1-km storm-relative helicity (SRH), and ML lifted condensation level (LCL) have been calculated here using archived surface objective analysis data, and then examined during the period 2003−2010 over the central and eastern United States. These components then were compared and contrasted in order to distinguish between environmental characteristics analyzed for three different synoptic-cyclone regimes that produced significantly tornadic supercells: cold fronts, warm fronts, and drylines. Results show that MLCAPE contributes strongly to the dryline significant-tornado environment, while it was less pronounced in cold- frontal significant-tornado regimes. The 0–6-km BWD was found to contribute equally to all three significant tornado regimes, while 0–1-km SRH more strongly contributed to the cold-frontal significant- tornado environment than for the warm-frontal and dryline regimes. –––––––––––––––––––––––– 1. Background and motivation As detailed in Hobbs et al. (1996), synoptic- scale cyclones that foster tornado development Parameter-based and pattern-recognition evolve with time as they emerge over the central forecast techniques have been essential and eastern contiguous United States (hereafter, components of anticipating tornadoes in the CONUS). -
Evaluating Operational and Newly Developed Mesocyclone and Tornado Detection Algorithms for Quasi-Linear Convective Systems Thomas James Turnage
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Evaluating Operational and Newly Developed Mesocyclone and Tornado Detection Algorithms for Quasi-Linear Convective Systems Thomas James Turnage Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES EVALUATING OPERATIONAL AND NEWLY DEVELOPED MESOCYCLONE AND TORNADO DETECTION ALGORITHMS FOR QUASI-LINEAR CONVECTIVE SYSTEMS By THOMAS JAMES TURNAGE A thesis submitted to the Department of Meteorology in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Summer Semester, 2007 The members of the Committee approve the thesis of Thomas J. Turnage defended on April 5th, 2007. ____________________________________ Henry E. Fuelberg Professor Directing Thesis ____________________________________ Jon E. Ahlquist Committee Member ____________________________________ Paul H. Ruscher Committee Member ____________________________________ Andrew I. Watson Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS I first want to thank the Lord. Without His blessings, none of this would have been possible. Next, I want to express my deepest gratitude and appreciation to my major professor Dr. Henry Fuelberg for working with me to complete this thesis in spite of rotating shift work at the National Weather Service (NWS) in Tallahassee and a subsequent move to Michigan. His high standards of integrity and academic excellence have been an inspiration to me. I also wish to thank the members of my thesis committee, Mr. Irv Watson of the NWS in Tallahassee, and Drs. Jon Ahlquist and Paul Ruscher for their advice and support. -
The Montague Doppler Radar, an Overview June 2018
ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING · 317 WASHINGTON STREET · WATERTOWN, NY 13601 · (315) 785-2380 · WWW.TUGHILL.ORG The Tug Hill Commission Technical and Issue Paper Series are designed to help local officials and citizens in the Tug Hill region and other rural parts of New York State. The Tech- nical Paper Series provides guidance on procedures based on questions frequently received by the Commis- sion. The Issue Paper Series pro- vides background on key issues facing the region without taking advocacy positions. Other papers in each se- ries are available from the Tug Hill Commission. Please call us or vis- it our website for more information. The Montague Doppler Weather Radar, An Overview Table of Contents Introduction .................................................................................................................................................. 1 Who owns the Montague radar? ................................................................................................................. 1 Who uses the Montague radar? .................................................................................................................. 1 How does the radar system work? .............................................................................................................. 2 How does the radar predict lake-effect snowstorms? ................................................................................ 2 How does the -
Glossary Compiled with Use of Collier, C
Glossary Compiled with use of Collier, C. (Ed.): Applications of Weather Radar Systems, 2nd Ed., John Wiley, Chichester 1996 Rinehard, R.E.: Radar of Meteorologists, 3rd Ed. Rinehart Publishing, Grand Forks, ND 1997 DoC/NOAA: Fed. Met. Handbook No. 11, Doppler Radar Meteorological Observations, Part A-D, DoC, Washington D.C. 1990-1992 ACU Antenna Control Unit. AID converter ADC. Analog-to-digitl;tl converter. The electronic device which converts the radar receiver analog (voltage) signal into a number (or count or quanta). ADAS ARPS Data Analysis System, where ARPS is Advanced Regional Prediction System. Aliasing The process by which frequencies too high to be analyzed with the given sampling interval appear at a frequency less than the Nyquist frequency. Analog Class of devices in which the output varies continuously as a function of the input. Analysis field Best estimate of the state of the atmosphere at a given time, used as the initial conditions for integrating an NWP model forward in time. Anomalous propagation AP. Anaprop, nonstandard atmospheric temperature or moisture gradients will cause all or part of the radar beam to propagate along a nonnormal path. If the beam is refracted downward (superrefraction) sufficiently, it will illuminate the ground and return signals to the radar from distances further than is normally associated with ground targets. 282 Glossary Antenna A transducer between electromagnetic waves radiated through space and electromagnetic waves contained by a transmission line. Antenna gain The measure of effectiveness of a directional antenna as compared to an isotropic radiator, maximum value is called antenna gain by convention. -
Downloaded 09/30/21 06:43 PM UTC JUNE 1996 MONTEVERDI and JOHNSON 247
246 WEATHER AND FORECASTING VOLUME 11 A Supercell Thunderstorm with Hook Echo in the San Joaquin Valley, California JOHN P. MONTEVERDI Department of Geosciences, San Francisco State University, San Francisco, California STEVE JOHNSON Association of Central California Weather Observers, Fresno, California (Manuscript received 30 January 1995, in ®nal form 9 February 1996) ABSTRACT This study documents a damaging supercell thunderstorm that occurred in California's San Joaquin Valley on 5 March 1994. The storm formed in a ``cold sector'' environment similar to that documented for several other recent Sacramento Valley severe thunderstorm events. Analyses of hourly subsynoptic surface and radar data suggested that two thunderstorms with divergent paths developed from an initial echo that had formed just east of the San Francisco Bay region. The southern storm became severe as it ingested warmer, moister boundary layer air in the south-central San Joaquin Valley. A well-developed hook echo with a 63-dBZ core was observed by a privately owned 5-cm radar as the storm passed through the Fresno area. Buoyancy parameters and ho- dograph characteristics were obtained both for estimated conditions for Fresno [on the basis of a modi®ed morning Oakland (OAK) sounding] and for the actual storm environment (on the basis of a radiosonde launched from Lemoore Naval Air Station at about the time of the storm's passage through the Fresno area). Both the estimated and actual hodographs essentially were straight and suggested storm splitting. Although the actual CAPE was similar to that which was estimated, the observed magnitude of the low-level shear was considerably greater than the estimate. -
Meteorology – Lecture 19
Meteorology – Lecture 19 Robert Fovell [email protected] 1 Important notes • These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his “Meteorology” course, published by The Great Courses (TGC). Unless otherwise identified, they were created by RGF. • In some cases, the figures employed in the course video are different from what I present here, but these were the figures I provided to TGC at the time the course was taped. • These figures are intended to supplement the videos, in order to facilitate understanding of the concepts discussed in the course. These slide shows cannot, and are not intended to, replace the course itself and are not expected to be understandable in isolation. • Accordingly, these presentations do not represent a summary of each lecture, and neither do they contain each lecture’s full content. 2 Animations linked in the PowerPoint version of these slides may also be found here: http://people.atmos.ucla.edu/fovell/meteo/ 3 Mesoscale convective systems (MCSs) and drylines 4 This map shows a dryline that formed in Texas during April 2000. The dryline is indicated by unfilled half-circles in orange, pointing at the more moist air. We see little T contrast but very large TD change. Dew points drop from 68F to 29F -- huge decrease in humidity 5 Animation 6 Supercell thunderstorms 7 The secret ingredient for supercells is large amounts of vertical wind shear. CAPE is necessary but sufficient shear is essential. It is shear that makes the difference between an ordinary multicellular thunderstorm and the rotating supercell. The shear implies rotation. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform
aerospace Article An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform Xining Yu 1,*, Yan Zhang 1, Ankit Patel 1, Allen Zahrai 2 and Mark Weber 2 1 School of Electrical and Computer Engineering, University of Oklahoma, 3190 Monitor Avenue, Norman, OK 73019, USA; [email protected] (Y.Z.); [email protected] (A.P.) 2 National Severe Storms Laboratory, National Oceanic and Atomospheric Administration, Norman, OK 73072, USA; [email protected] (A.Z.); [email protected] (M.W.) * Correspondence: [email protected]; Tel.: +1-405-325-2871 Academic Editor: Konstantinos Kontis Received: 22 July 2016; Accepted: 2 September 2016; Published: 9 September 2016 Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language. Keywords: phased array radar; embedded computing; serial RapidIO; MPAR 1. Introduction 1.1. Real-Time, Large-Scale, Phased Array Radar Systems In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro Telecom Computing Architecture (MTCA) chassis. -
Central Region Technical Attachment 95-08 Examination of an Apparent
CRH SSD APRIL 1995 CENTRAL REGION TECHNICAL ATTACHMENT 95-08 EXAMINATION OF AN APPARENT LANDSPOUT IN THE EASTERN BLACK HILLS OF WESTERN SOUTH DAKOTA David L. Hintz1 and Matthew J. Bunkers National Weather Service Office Rapid City, South Dakota 1. Abstract On June 29, 1994, an apparent landspout occurred in the Black Hills of South Dakota. This landspout exhibited most of the features characteristic of traditional landspouts documented in eastern Colorado. The landspout lasted 3 to 8 minutes, had a width of less than 20 m and a path of 1 to 3 km, produced estimated wind speeds of Fl intensity (33 to 50 m s1), and emanated from a towering cumulus (TCU) cloud located along a quasi-stationary convergencq/cyclonic shear zone. No radar echo was observed with this event; however, a supercell thunderstorm was located 80-100 km to the east. National Weather Service meteorologists surveyed the “very localized” damage area and ruled out the possibility of the landspout being related to microburst, gustnado, or dust devil activity, as winds away from the landspout were less than 3 m s1. The landspout apparently “detached” from the parent TCU and damaged a farm which resulted in $1,000 dollars in expenses. 2. Introduction During the late 1980’s and early 1990’s researchers documented a phe nomenon with subtle differences from traditional tornadoes and waterspouts, herein referred to as the landspout (Seargent 1994; Brady and Szoke 1988, 1989; Bluestein 1985). The term “landspout” was actually coined by Bluestein (I985)(in the formal literature) when he observed this type of vortex along an Oklahoma squall line.