Colossal Squid Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Colossal Squid Fact Sheet Colossal Squid Fact Sheet Common Name: Colossal Squid / Antartic squid / Giant cranch squid Scientific Name: Mesonychoteuthis hamiltoni Wild Status: Least Concern Habitat: Up to 3,280 miles under water Country: From Antarctica to southern South America, Southern South Africa and Southern tip of New Zealand Shelter: Ocean Life Span: About 2 years Size: Up to 46feet long and up to 1,650 pounds Details: The Colossal Squid is the largest species of squid, and also possesses the largest eyes in the animal kingdom. They can weight up to 1,650 pounds and be as long as 46 feet. They are also the largest known invertebrate. Their tentacles have large hooks at the end, some swiveling and others three-pointed. Their bodies are wider and heavier than that of the Giant Squid. The Colossal Squid exhibits abyssal gigantism. They also have the largest beak of any known squid. Their habitat range is thousands of miles making it the inhabitant of the entire circumantarctic Southern Ocean. They mainly eat the Antarctic toothfish and chaetognaths, and other deep sea squids. It is believed they have a slow metabolic rate and eat about 1.1 oz of prey daily. It is also believed they are the slow moving ambush type of hunter. The Colossal Squid apparently lacks a hectocotylus (an arm used in other cephalopods to transfer a spermatophore to the female) and so most likely uses a penis. The female Colossal Squid ovaries contain thousands of eggs. The Colossal Squids main predators are beaked whales, pilot whales, Souther elephant seals, Patagonian toothfish, sleeper sharks and albatrosses. It is believed the Colossal Squid lives up to 2 years. Cool Facts: • Sperm whales are one of the Colossal Squid's natural predators. • They have the largest eyes in the animal kingdom, measuring at 11 inches in diameter. • The ends of the tentacles also feature sharp hooks. • The Colossal Squid is the largest species of squid. • Their primary diet consists of chaetognaths, toothfish, and other deep sea squid. • Colossal squid are thought to have longer mantles than the giant squid, but shorter tentacles. • The Colossal Squid is the largest known invertebrate. Taxonomic Breakdown: Kingdom: Animalia Phylum: Mollusca Class: Cephalopoda Superorder: Decapodiformes Order: Oegopsida Family: Cranchilidae Subfamily: Taonilnae Genus: Mesonychoteuthis Species: Mesonychoteuthis hamiltoni Conservation & Helping: There are no conservation measures in place as finding specimens of the Colossal Squid is rare. Download all our fact sheets, take our quizzes, and more, all in the Critter Squad Kids’ Zone! https://www.crittersquad.com/kids-zone/.
Recommended publications
  • A Review of Southern Ocean Squids Using Nets and Beaks
    Marine Biodiversity (2020) 50:98 https://doi.org/10.1007/s12526-020-01113-4 REVIEW A review of Southern Ocean squids using nets and beaks Yves Cherel1 Received: 31 May 2020 /Revised: 31 August 2020 /Accepted: 3 September 2020 # Senckenberg Gesellschaft für Naturforschung 2020 Abstract This review presents an innovative approach to investigate the teuthofauna from the Southern Ocean by combining two com- plementary data sets, the literature on cephalopod taxonomy and biogeography, together with predator dietary investigations. Sixty squids were recorded south of the Subtropical Front, including one circumpolar Antarctic (Psychroteuthis glacialis Thiele, 1920), 13 circumpolar Southern Ocean, 20 circumpolar subantarctic, eight regional subantarctic, and 12 occasional subantarctic species. A critical evaluation removed five species from the list, and one species has an unknown taxonomic status. The 42 Southern Ocean squids belong to three large taxonomic units, bathyteuthoids (n = 1 species), myopsids (n =1),andoegopsids (n = 40). A high level of endemism (21 species, 50%, all oegopsids) characterizes the Southern Ocean teuthofauna. Seventeen families of oegopsids are represented, with three dominating families, onychoteuthids (seven species, five endemics), ommastrephids (six species, three endemics), and cranchiids (five species, three endemics). Recent improvements in beak identification and taxonomy allowed making new correspondence between beak and species names, such as Galiteuthis suhmi (Hoyle 1886), Liguriella podophtalma Issel, 1908, and the recently described Taonius notalia Evans, in prep. Gonatus phoebetriae beaks were synonymized with those of Gonatopsis octopedatus Sasaki, 1920, thus increasing significantly the number of records and detailing the circumpolar distribution of this rarely caught Southern Ocean squid. The review extends considerably the number of species, including endemics, recorded from the Southern Ocean, but it also highlights that the corresponding species to two well-described beaks (Moroteuthopsis sp.
    [Show full text]
  • Making Ends Meet in the Ross
    Water & Atmosphere 16(2) 2008 Marine Ecosystems Making ends meet in the Ross Sea Matt Pinkerton, Janet Bradford-Grieve, and Stuart Hanchet are developing a mass-balance model to learn how animals fit together in the Ross Sea ecosystem. fter braving some of the worst sea ice in decades, NIWA scientists returned in late March from a seven- Aweek voyage to the Ross Sea region of Antarctica. Among our goals for the voyage was to learn more about the region’s predator–prey links and the abundance of some important and poorly understood species. Antarctica's unique ecosystems Compared to temperate regions, the waters of the Southern n o rt e Ocean have low primary productivity – the production k in P t of organic matter by plants that is the basis of marine food at M e: webs. In temperate waters, like those around New Zealand, ag Im phytoplankton grows during most of the year. But in the Ross Sea there’s a long period between late May and mid July when the region is in 24-hour darkness and no plants can grow. The Based on data from NASA satellites, this image shows the phyto- plankton concentration in the Ross Sea. High concentrations are year’s entire primary production happens in brief events in the shown in green and red, lower concentrations are blue and purple. spring and summer, and these bursts of high productivity are (Data used courtesy of NASA.) often very localised. Another challenge for Antarctic animals is the dramatic change through the year to the available of the larger, mobile animals leave the region completely during environment, as sea ice forms in the autumn and then melts winter, including minke whales, most seals, petrels, and Adélie in the spring.
    [Show full text]
  • Humboldt Squid ×
    This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Photo MEDIA SPOTLIGHT Humboldt Squid 'Red Devils' haunt the Pacific Ocean For the complete photos with media resources, visit: http://education.nationalgeographic.com/media/humboldt-squid/ FAST FACTS Humboldt squid are large predators native to the deep waters of the Humboldt current, which flows northwest from Tierra del Fuego to the northern coast of Peru. The species range of the Humboldt squid, however, has expanded as far north as the U.S. state of Alaska. Both the Humboldt squid and the Humboldt current are named after Alexander von Humboldt, a German geographer who explored Central and South America in the 18th and 19th centuries. Humboldt squid are also known as jumbo squid, flying squid, and diablos rojos or red devils. Humboldt squid earned the nickname "red devils" due to their aggressive nature and ability to light themselves up (bioluminescence) in flashes of red and white. Humboldt squid earned the nickname "jumbo squid" by their sheer size. They grow up to 2 meters (6 feet) and weigh as much as 50 kilograms (110 pounds.) Jumbo squid are not the largest squid, however. Giant squid grow up to 13 meters (43 feet) and weigh as much as 275 kilograms (610 pounds). Colossal squid grow up to 14 meters (46 feet) and weigh as much as 495 kilograms (1,091 pounds). VOCABULARY Term Part of Speech Definition aggressive adjective forceful or offensive. Alexander von noun (1769-1859) German geographer and naturalist.
    [Show full text]
  • 8 Armed Bandits; a Closer Look at Cephalopods an Educator’S Guide to the Program
    8 Armed Bandits; A Closer Look at Cephalopods An Educator’s Guide to the Program Grades K-5 Program Description: This program explores the class of mollusk known as cephalopods. Cephalopods are the most intelligent group of mollusk and most of them lack a shell. The name cephalopod means “head-foot” and contains: octopus, squid, cuttlefish and nautilus. The goal of 8-armed bandits is to teach students the characteristics, defense mechanisms, and extreme intelligence of cephalopods. *Before your class visits the Oklahoma Aquarium* This guide contains information and activities for you to use both before and after your visit to the Oklahoma Aquarium. You may want to read stories about cephalopods and their abilities to the students, present information in class, or utilize some of the activities from this booklet. 1 Table of Contents 8 armed bandits abstract 3 Educator Information 4 Vocabulary 5 Internet resources and books 6 PASS/OK Science standards 7-8 Accompanying Activities Build Your Own squid (K-5) 9 How do Squid Defend Themselves? (K-5) 10 Octopus Arms (K-3) 11 Octopus Math (pre-K-K) 12 Camouflage (K-3) 13 Octopus Puppet (K-3) 14 Hidden animals (K-1) 15 Cephalopod color pages (3) (K-5) 16 Cephalopod Magic (4-5) 19 Nautilus (4-5) 20 2 8 Armed Bandits; A Closer Look at Cephalopods: Abstract Cephalopods are a class of mollusk that are highly intelligent and unlike most other mollusk, they generally lack a shell. There are 85,000 different species of mollusk; however cephalopods only contain octopi, squid, cuttlefish and nautilus.
    [Show full text]
  • Reproduction and Early Life of the Humboldt Squid
    REPRODUCTION AND EARLY LIFE OF THE HUMBOLDT SQUID A DISSERTATION SUBMITTED TO THE DEPARTMENT OF BIOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Danielle Joy Staaf August 2010 © 2010 by Danielle Joy Staaf. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/cq221nc2303 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. William Gilly, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Mark Denny I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. George Somero Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Dosidicus gigas, the Humboldt squid, is endemic to the eastern Pacific, and its range has been expanding poleward in recent years.
    [Show full text]
  • Marine Ecology Progress Series 370:239
    Vol. 370: 239–247, 2008 MARINE ECOLOGY PROGRESS SERIES Published October 28 doi: 10.3354/meps07673 Mar Ecol Prog Ser Stable isotopes reveal the trophic position and mesopelagic fish diet of female southern elephant seals breeding on the Kerguelen Islands Y. Cherel1,*, S. Ducatez1, C. Fontaine1, P. Richard2, C. Guinet1 1Centre d’Etudes Biologiques de Chizé, UPR 1934 du CNRS, BP 14, 79360 Villiers-en-Bois, France 2Centre de Recherche sur les Ecosystèmes Littoraux Anthropisés, UMR 6217 du CNRS-IFREMER-ULR, Place du Séminaire, BP 5, 17137 L’Houmeau, France ABSTRACT: Trophic interactions between organisms are the main drivers of ecosystem dynamics, but scant dietary information is available for wide-ranging predators during migration. We investi- gated feeding habits of a key consumer of the Southern Ocean, the southern elephant seal Miroun- gia leonina, by comparing its blood δ13C and δ15N values with those of various marine organisms, including crustaceans, squid, fishes, seabirds and fur seals. At the end of winter, δ13C values (–23.1 to –20.1‰) indicate that female elephant seals forage mainly in the vicinity of the Polar Front and in the Polar Frontal Zone. Trophic levels derived from δ15N values (trophic level = 4.6) show that the southern elephant seal is a top consumer in the pelagic ecosystem that is dominated by colossal squid. The mean δ15N value of seals (10.1 ± 0.3‰) indicates that they are not crustacean eaters, but instead feed on crustacean-eating prey. Surprisingly, most of the previously identified prey species have isotope δ13C and δ15N values that do not fit with those of potential food items.
    [Show full text]
  • A Network of Marine Protected Areas in the Southern Ocean Protecting One of Earth’S Last Great Wilderness Areas
    A fact sheet from May 2017 Philippe Bourseiller A Network of Marine Protected Areas in the Southern Ocean Protecting one of Earth’s last great wilderness areas Overview The Southern Ocean, surrounding Antarctica, is one of the least altered marine ecosystems on Earth. Encompassing 15 percent of the world’s ocean, it is home to thousands of species found nowhere else, from brilliantly hued starfish and bioluminescent worms to pastel octopuses. It is also home to millions of penguins that depend on large swarms of krill, a tiny shrimplike crustacean, as well as other forage species that form the base of a delicate food web. Scientists believe this ecosystem is changing due to the impact of climate change and temperatures that are warming faster than nearly anywhere else on Earth. These waters are also vital to the health of the planet, producing strong upwelling currents that carry critical nutrients to seas around the world. To protect this spectacular region, The Pew Charitable Trusts and its partners are working with the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) and its member governments to establish a network of large-scale marine protected areas (MPAs) around Antarctica. A Living Laboratory of 1 Penguins 2 Whales 3 Seals 4 Seabirds 5 Fish 6 Invertebrates Unique Biodiversity Adélie Blue Antarctic fur Snow petrel Antarctic and Patagonian Krill Chinstrap Southern bottlenose Crabeater Wandering albatross toothfish (Chilean sea bass) Antarctic sea spider Antarctic krill are a keystone species, serving as a major Gentoo Humpback Southern elephant Antarctic petrel Icefish Crawling and glass sponges food source for more than 25 percent of the species in the Emperor Antarctic minke Leopard Antarctic fulmar Lanternfish Antarctic coral diverse Antarctic food web, including penguins, seals, whales, King Long-finned pilot Ross Antarctic eel cod Bone-eating worm and many fish species.
    [Show full text]
  • Cephalopods As Predators: a Short Journey Among Behavioral Flexibilities, Adaptions, and Feeding Habits
    REVIEW published: 17 August 2017 doi: 10.3389/fphys.2017.00598 Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits Roger Villanueva 1*, Valentina Perricone 2 and Graziano Fiorito 3 1 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain, 2 Association for Cephalopod Research (CephRes), Napoli, Italy, 3 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy The diversity of cephalopod species and the differences in morphology and the habitats in which they live, illustrates the ability of this class of molluscs to adapt to all marine environments, demonstrating a wide spectrum of patterns to search, detect, select, capture, handle, and kill prey. Photo-, mechano-, and chemoreceptors provide tools for the acquisition of information about their potential preys. The use of vision to detect prey and high attack speed seem to be a predominant pattern in cephalopod species distributed in the photic zone, whereas in the deep-sea, the development of Edited by: Eduardo Almansa, mechanoreceptor structures and the presence of long and filamentous arms are more Instituto Español de Oceanografía abundant. Ambushing, luring, stalking and pursuit, speculative hunting and hunting in (IEO), Spain disguise, among others are known modes of hunting in cephalopods. Cannibalism and Reviewed by: Francisco Javier Rocha, scavenger behavior is also known for some species and the development of current University of Vigo, Spain culture techniques offer evidence of their ability to feed on inert and artificial foods. Alvaro Roura, Feeding requirements and prey choice change throughout development and in some Institute of Marine Research, Consejo Superior de Investigaciones Científicas species, strong ontogenetic changes in body form seem associated with changes in (CSIC), Spain their diet and feeding strategies, although this is poorly understood in planktonic and *Correspondence: larval stages.
    [Show full text]
  • Giant Squid by Sheri Skelton
    Giant Squid By Sheri Skelton 1 Can you imagine having eyes as big as basketballs? The giant squid has eyes that big. Each of its eyes measures about 12 inches in diameter. Giant squid have the largest eyes in the animal kingdom. The only other animal with eyes that big is the colossal squid. Giant squid need big eyes. The big eyes help the squid to find food deep in the ocean where it is very dark. 2 The giant squid rivals the colossal squid for the title of the biggest invertebrate on Earth. The largest one ever found was almost 60 feet long and weighed almost one ton. The giant squid has a body called a mantle. The giant squid has small fins at the end of its mantle. The giant squid uses the fins to maneuver itself through the water. The giant squid propels itself through the water by pushing water out of its mantle through a siphon. The giant squid breathes through pairs of gills inside the mantle. The giant squid has eight arms and two longer tentacles. The giant squid uses the tentacles to bring food to its mouth. 3 Almost everything we know about giant squid has been learned from studying the carcasses of giant squid. The bodies of the giant squid either wash up on beaches or are captured in nets by fishermen. In 2004 researchers in Japan took the first pictures of a live giant squid living in the ocean. Two years later the same researchers made a film of a live giant squid.
    [Show full text]
  • Environmental Determinants of Latitudinal Size-Trends in Cephalopods
    Vol. 464: 153–165, 2012 MARINE ECOLOGY PROGRESS SERIES Published September 19 doi: 10.3354/meps09822 Mar Ecol Prog Ser Environmental determinants of latitudinal size-trends in cephalopods Rui Rosa1,*, Liliana Gonzalez2, Heidi M. Dierssen3, Brad A. Seibel4 1Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal 2Department of Computer Science and Statistics, University of Rhode Island, 9 Greenhouse Road, Kingston, Rhode Island 02881, USA 3Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut 06340-6048, USA 4Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881, USA ABSTRACT: Understanding patterns of body size variation is a fundamental goal in ecology, but although well studied in the terrestrial biota, little is known about broad-scale latitudinal trends of body size in marine fauna and much less about the factors that drive them. We conducted a com- prehensive survey of interspecific body size patterns in coastal cephalopod mollusks, covering both hemispheres in the western and eastern Atlantic. We investigated the relationship between body size and thermal energy, resource and habitat availability and depth ranges. Both latitude and depth range had a significant effect on maximum body size in each of the major cephalopod groups (cuttlefishes, squids and octopuses). We observed significant negative associations between sea surface temperature (SST) and body size. No consistent relationships between body size and either net primary productivity (NPP), habitat extent (shelf area) or environmental varia- tion (range of SST and NPP) were found.
    [Show full text]
  • (Mesonychoteuthis Hamiltoni) and the Antarctic Toothfish (Dissostichus Mawsoni) A.V
    Journal of Natural History, 2015 Vol. 49, Nos. 41–42, 2483–2491, http://dx.doi.org/10.1080/00222933.2015.1040477 Alien vs. Predator: interactions between the colossal squid (Mesonychoteuthis hamiltoni) and the Antarctic toothfish (Dissostichus mawsoni) A.V. Remesloa*, M.R. Yakusheva and V. Laptikhovskyb aAtlantic Research Institute of Fisheries and Oceanography, Kaliningrad, Russia; bCEFAS, Lowestoft, UK (Received 16 December 2014; accepted 9 April 2015; first published online 2 June 2015) Data collected onboard two South Korean longliners in 2011–2014 targeting Antarctic toothfish provided insights into trophic interactions between two Antarctic top predators: the colossal squid Mesonychoteuthis hamiltoni and the Antarctic toothfish Dissostichus mawsoni. Adults of each species opportunistically prey upon weakened representatives of the other species: squid will feed on longline- caught toothfish, and toothfish on dying and dead squid. The highest occurrence of squid attacks was recorded in the Davis Sea and Commonwealth Sea, and the lowest in the Ross Sea. Squid depredation rates were around 1% on average, though regionally they might rise to 2–3%, which is of a similar magnitude to rates caused by sperm whales and killer whales in some areas. Keywords: longline; depredation; colossal squid; Antarctic toothfish; Mesonychoteuthis hamiltoni Introduction The colossal squid (Mesonychoteuthis hamiltoni Robson, 1925) is one of the largest known cephalopods that has ever existed, attaining a maximum mantle length (ML) of about 250 cm, and maximum recorded weight of 495 kg (Roper and Jereb 2010). The species was originally described from the remains found in a sperm whale (Physeter macrocephalus) stomach (Robson 1925) and until recently was recorded mostly from stomachs of these whales (Korabelnikov 1959; Klumov and Yukhov 1975; Clarke 1980; Filippova 2002).
    [Show full text]
  • Deep Sea Coloring Booklet
    SUBMARINE STEM Explore life in the deep sea Deep sea coloring booklet About XL Catlin XL Catlin, is the global brand used by XL Group PLC’s (NYSE:XL) insurance and reinsurance companies which provide property, casualty, professional and specialty products to industrial, commercial and professional firms, insurance companies and other enterprises throughout the world. Clients look to XL Catlin for answers to their most complex risks and to help move their world forward. XL Catlin is proud to sponsor research and educational programmes which explore how our planet’s oceans may be changing. The XL Catlin Deep Ocean Survey is its third major scientific sponsorship following the Catlin Arctic Surveys, (2009 – 2011) that investigated the impacts of changes to the Arctic Ocean, and the XL Catlin Seaview Survey (2012-2016) which created the world’s first digital baseline of coral reef health. To learn more visit XLCatlinOceansEducation.com. About Digital Explorer Digital Explorer is an award-winning education social enterprise based in London. A pioneer in the development of innovative real-world learning programmes, Digital Explorer supports teachers and students internationally to understand and engage with critical global issues from the oceans to cultural understanding. About Nekton Nekton combines world-class experience across multi-disciplinary marine research expeditions, submersible operations, multi-platform content creation and distribution, marketing and communications, scientific research, international collaborative networks and sustainable organisational development. WELCOME Welcome to the Submarine STEM (Science, Technology, Engineering & Math) Deep sea coloring booklet. We hope you enjoy learning more about the amazing creatures that live in the deep ocean. You can find out more about deep sea life and exploring the deep from other Submarine STEM resources, available for free download from nektonmission.
    [Show full text]