Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death

Total Page:16

File Type:pdf, Size:1020Kb

Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death Peptides, Vol. 18, No. 8, pp. 1189–1195, 1997 Copyright © 1997 Elsevier Science Inc. Printed in the USA. All rights reserved 0196-9781/97 $17.00 1 .00 PII S0196-9781(97)00182-4 Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death D. BRAIDA,1 E. PALADINI, E. GORI AND M. SALA Institute of Pharmacology, Faculty of Mathematical, Physical and Natural Sciences, University of Milan, Via Vanvitelli 32/A, 20129, Milan, Italy Received 10 March 1997; Accepted 15 May 1997 BRAIDA, D., E. PALADINI, E. GORI AND M. SALA. Naltrexone, naltrindole, and CTOP block cocaine-induced sensitization to seizures and death. PEPTIDES 18(8) 1189–1195, 1997.—ICV injection for 9 days of either naltexone (NTX) (5, 10, 20, 40 mg/rat) or a selective m peptide (CTOP) (0.125, 0.25, 0.5, 1, 3, 6 mg/rat) or d (naltrindole) (NLT) (5, 10, 20 mg/rat) subtype opioid receptor antagonist affected sensitization to cocaine (COC) (50 mg/kg, IP) administered 10 min after. NTX (5 and 40 mg/rat), NLT (10 and 20 mg/rat), and the peptide CTOP (0.25–0.5 mg/rat) attenuated seizure parameters (percent of animals showing seizures, mean score and latency) in a day-related manner. The DD50 (days to reach 50% of death) value for COC was 2.69, whereas it was 9.67 and 7.27 for NTX 5 and 40 mg/rat, 8.59 for NLT (10 mg/rat), and 6.11, 5.95, and 4.30 for CTOP (0.25, 0.5, and 1 mg/rat respectively). These findings suggest a concurrent involvement of m- and d-opioid receptor subtype in COC-induced sensitization to toxic effects. © 1997 Elsevier Science Inc. m- and d-Opioid receptor Pharmacological kindling Lethality Central administration Rat THE exact mechanism by which cocaine (COC) produces its been studied on the development of COC-induced pharmacologi- toxicity is not well understood even though episodes of human cal kindling. The present study was designed to investigate a behavioral toxicity have been attributed to the development of highly m-selective opioid peptide, CTOP, and a d-selective one, sensitization (32). In COC addicts, sensitization may have impor- naltrindole (NLT), both administered centrally on COC-induced tant consequences such as drug-induced panic attacks, paranoia, seizures and death in the rat in comparison with NTX, a nonse- seizures, and lethality (29). lective opiate antagonist. There is a growing body of evidence to support an opioid CTOP has been proved the most potent and highly selective modulation of COC-induced sensitization to biochemical and be- conformationally restricted somatostatin octapeptide analogue for havioral effects. In fact, pretreatment either with naltrexone (NTX) m-opioid receptors. The peptide is able to inhibit [3H]naloxone (8,19,36,41) or with different opioid subtype receptor antagonists binding at m sites in rat brain membrane preparation with an IC50 (7,10,17,28,33) in combination with COC prevented the develop- of 2.80 nM (without NaCl) and possesses a Ki value of 0.18 nM ment of sensitization to locomotor activity and reward. Other (15). In addition, the peptide, when administered ICV at a dose of studies, even if contradictory, suggest that opiate receptors are 1 mg/rat, was able to antagonize morphine-induced analgesia in the important in modulating toxic effects of COC after both acute and cold water tail flick test (1). repeated administration. Pretreatment with naloxone failed to NLT is a nonpeptide ligand that potently antagonizes the d block acute COC lethality in rats, and the incidence of seizures and agonists (DADLE and DPDPE) on smooth muscle preparations of death was significantly potentiated by pretreatment with morphine mouse vas deferens with a Ke value in the range of 0.1–0.3 nM (9). On the other hand, the partial opioid agonist buprenorphine (31) and it is able to block intrathecally DPDPE-induced antino- protected against the lethal effect of COC in mice, whereas NTX ciception in the tail flick test in mice (25). had no such effect (47). In addition, daily pretreatment with In our study, the range of doses chosen for the two selective peripheral NTX completely antagonized COC-induced sensitiza- opiate antagonists were previously shown to selectively block m tion to seizures and death (35). and d agonist-induced antinociception without producing an anal- The influence of d- and m-opioid receptor subtypes has not gesic effect of their own (5,40,46). Requests for reprints should be addressed to D. Braida. 1189 1190 BRAIDA ET AL. METHOD post hoc comparisons (Tukey’s multiple comparison test) were subsequently made to ascertain pairwise differences between Animals means. Mean seizure scores were analyzed by nonparametric anal- Male Wistar albino rats (Charles River Italia, Calco, Como, ysis of variance (Kruskal–Wallis test) using a chi-square parameter Italy) weighing 200–220 g were used. Animals were housed in followed by post hoc comparisons, when appropriate. When com- individual cages in a climate-controlled colony room with a 12-h pared with COC data, incidence of seizures and death was ana- dark–light cycle (lights on at 0800 h) with food and water available lyzed by Fisher’s exact probability test. The same data were ad lib. All animals were handled daily throughout the first week trasformed into probit and linear regression of probit data on log of after their arrival, and experimental testing began 7 days after this the days was calculated. The days to attain 50% of death (DD50) habituation period. was calculated according to Lison (24). The DD50 obtained from different treatments were compared using Student’s t-test. Surgery For ICV administration, animals were anesthetized with 400 RESULTS mg/kg IP of chloral hydrate (Sigma Chemical Co., St. Louis, MO) Animals that had received one of the different doses of each and prepared according to Altaffer et al. (2) by implanting a antagonist 10 min before the IP injection of saline showed no stainless steel cannula (o.d. 0.50 mm, i.d. 0.22 mm) into the brain obvious behavioral changes except a slight arousal at the highest right ventricle according to the coordinates indicated by a stereo- dose of NLT (20 mg/rat) and CTOP (3 or 6 mg/rat) (data not taxic atlas (30). To ascertain the accuracy of ICV injections, at the shown). end of the experiment rats were injected with 3 ml of a saturated Daily administration of COC induced a progressive increase in solution of Evans blue (BDH) by the same route and immediately the percentage of rats that convulsed from the first (61%) to ninth killed. Macroscopic examination of the brain confirmed that only day (100%), indicating the development of behavioral sensitization the area around the lateral ventricle was stained. Only animals with (Fig. 1). This increase was linearly related to the log of the days. histologically correct placements were employed. Repeated injections of NTX (5 mg/rat) in combination with Animal care was in accordance with state regulations govern- COC produced a linearly related lower increase of seizures that did ing the care and treatment of laboratory animals. not significantly differ from COC alone. Higher doses (10 and 20 mg/rat) significantly reduced the incidence of seizures from the Procedure third day (p , 0.01, Fisher’s test). The highest dose (40 mg/rat) led Five days postoperatively rats were randomly assigned to dif- to a significant reversal from the first to the last day (p , 0.001, ferent groups of 10–15 each, and injected ICV, once a day, Fisher’s test) in a linear-related manner. between 0900 and 1100 h, with sterile water (3 ml/rat ICV) or one Daily administration of NLT (5 mg/rat) with COC significantly of the increasing doses of NTX (5, 10, 20, 40 mg/rat), NLT (5, 10, reduced seizures from day 6 (p , 0.01, Fisher’s test). NLT (10–20 20 mg/rat), or CTOP (0.125, 0.25, 0.5, 1, 3, 6 mg/rat) 10 min before mg/rat) significantly reversed COC-induced seizures starting from IP injection of COC (50 mg/kg) or saline (SAL) (5 ml/kg) for 9 the first day (p , 0.001, Fisher’s test) in a linear-related manner. days at most, with 2 drug-free days each week. Immediately after Administration of CTOP (0.125, 0.25, 0.5 mg/rat) in combina- IP treatment animals were observed for 30 min in the plastic cages tion with COC did not affect the seizure incidence on the first day. (42 3 26 3 15 cm) in which they were normally housed for However, repeated injections of 0.25 and 0.5 mg/rat reduced sei- behavioral signs of seizures and lethality. Each trained observer zure incidence from the third to the last day, and 0.125 mg/rat from was blind to the drug conditions of the animals and to the purposes the sixth day (p , 0.01, Fisher’s test). Because the results for of the experiment. seizures and death with CTOP 3 and 6 mg/rat did not significantly differ from COC they were not shown in the figures. Seizures As expected, daily administration with COC increased the mean seizure score and decreased the mean latency from the first Behavioral seizures were assessed by a six-point scoring scale to the last day in a linear-related manner (Fig. 2). Only the highest according to (26): (0) no signs of convulsion; (1) shaking the head dose of NTX significantly reduced the mean score and increased or twitching individual trunk muscles; (2) repeated clonic spasms the mean latency on the first day [p , 0.05, Kruskal–Wallis test for of the trunk; (3) clonic spasm of the forelimb; (4) clonic–tonic score and F(4, 70) 5 5.49, p , 0.005, ANOVA, for latency] but convulsions with the animal falling on its side, followed by pos- from the third day all doses had significant effects (p , 0.05; p , tictal depression; (5) repeated severe tonic–clonic or lethal con- 0.01 depending on the dose and the day of treatment, see the vulsions.
Recommended publications
  • An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional D
    J Mol Cell Cardiol 32, 2187–2193 (2000) doi:10.1006/jmcc.2000.1241, available online at http://www.idealibrary.com on An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor Claire L. Neilan1, Erin Kenyon1, Melissa A. Kovach1, Kristin Bowden1, William C. Claycomb2, John R. Traynor3 and Steven F. Bolling1 1Department of Cardiac Surgery, University of Michigan, B558 MSRB II, Ann Arbor, MI 48109-0686, USA, 2Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, LA 70112, USA and 3Department of Pharmacology, University of Michigan, 1301 MSRB III, Ann Arbor, MI 48109-0632, USA (Received 17 March 2000, accepted in revised form 30 August 2000, published electronically 25 September 2000) C. L. N,E.K,M.A.K,K.B,W.C.C,J.R.T S. F. B.An Immortalized Myocyte Cell Line, HL-1, Expresses a Functional -Opioid Receptor. Journal of Molecular and Cellular Cardiology (2000) 32, 2187–2193. The present study characterizes opioid receptors in an immortalized myocyte cell line, HL-1. Displacement of [3H]bremazocine by selective ligands for the mu (), delta (), and kappa () receptors revealed that only the -selective ligands could fully displace specific [3H]bremazocine binding, indicating the presence of only the -receptor in these cells. Saturation binding studies with the -antagonist naltrindole 3 afforded a Bmax of 32 fmols/mg protein and a KD value for [ H]naltrindole of 0.46 n. The binding affinities of various ligands for the receptor in HL-1 cell membranes obtained from competition binding assays were similar to those obtained using membranes from a neuroblastoma×glioma cell line, NG108-15.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Hyporesponsivity to mu-opioid receptor agonism in the Wistar-Kyoto rat model of altered nociceptive responding associated with negative affective state Running title: Effects of mu-opioid receptor agonism in Wistar-Kyoto rats Mehnaz I Ferdousi1,3,4, Patricia Calcagno1,2,3,4, Morgane Clarke1,2,3,4, Sonali Aggarwal1,2,3,4, Connie Sanchez5, Karen L Smith5, David J Eyerman5, John P Kelly1,3,4, Michelle Roche2,3,4, David P Finn1,3,4,* 1Pharmacology and Therapeutics, 2Physiology, School of Medicine, 3Centre for Pain Research and 4Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland. 5Alkermes Inc., Waltham, Massachusetts, USA. *Corresponding author: Professor David P Finn, Pharmacology and Therapeutics, School of Medicine, Human Biology Building, National University of Ireland Galway, University Road, Galway, H91 W5P7, Ireland. Tel: +353 (0)91 495280 E-mail: [email protected] S.1. Supplementary methods S.1.1. Elevated plus maze test The elevated plus maze (EPM) test assessed the effects of drug treatment on anxiety-related behaviours in WKY and SD rats. The wooden arena, which was elevated 50 cm above the floor, consisted of central platform (10x10 cm) connecting four arms (50x10 cm each) in the shape of a “plus”. Two arms were enclosed by walls (30 cm high, 25 lux) and the other two arms were without any enclosure (60 lux). On the test day, 5 min after the HPT, rats were removed from the home cage, placed in the centre zone of the maze with their heads facing an open arm, and the behaviours were recorded for 5 min with a video camera positioned on top of the arena.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • Rubsicolins Are Naturally Occurring G-Protein-Biased Delta Opioid Receptor Peptides
    bioRxiv preprint doi: https://doi.org/10.1101/433805; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title page Title: Rubsicolins are naturally occurring G-protein-biased delta opioid receptor peptides Short title: Rubsicolins are G-protein-biased peptides Authors: Robert J. Cassell1†, Kendall L. Mores1†, Breanna L. Zerfas1, Amr H.Mahmoud1, Markus A. Lill1,2,3, Darci J. Trader1,2,3, Richard M. van Rijn1,2,3 Author affiliation: 1Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 2Purdue Institute for Drug Discovery, 3Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907 †Robert J Cassell and Kendall Mores contributed equally to this work Corresponding author: ‡Richard M. van Rijn, Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907 (Phone: 765-494- 6461; Email: [email protected]) Key words: delta opioid receptor; beta-arrestin; natural products; biased signaling; rubisco; G protein-coupled receptor Abstract: 187 Figures: 2 Tables: 2 References: 27 1 bioRxiv preprint doi: https://doi.org/10.1101/433805; this version posted October 5, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The impact that β-arrestin proteins have on G-protein-coupled receptor trafficking, signaling and physiological behavior has gained much appreciation over the past decade. A number of studies have attributed the side effects associated with the use of naturally occurring and synthetic opioids, such as respiratory depression and constipation, to excessive recruitment of β-arrestin.
    [Show full text]
  • Opioid Receptorsreceptors
    OPIOIDOPIOID RECEPTORSRECEPTORS defined or “classical” types of opioid receptor µ,dk and . Alistair Corbett, Sandy McKnight and Graeme Genes encoding for these receptors have been cloned.5, Henderson 6,7,8 More recently, cDNA encoding an “orphan” receptor Dr Alistair Corbett is Lecturer in the School of was identified which has a high degree of homology to Biological and Biomedical Sciences, Glasgow the “classical” opioid receptors; on structural grounds Caledonian University, Cowcaddens Road, this receptor is an opioid receptor and has been named Glasgow G4 0BA, UK. ORL (opioid receptor-like).9 As would be predicted from 1 Dr Sandy McKnight is Associate Director, Parke- their known abilities to couple through pertussis toxin- Davis Neuroscience Research Centre, sensitive G-proteins, all of the cloned opioid receptors Cambridge University Forvie Site, Robinson possess the same general structure of an extracellular Way, Cambridge CB2 2QB, UK. N-terminal region, seven transmembrane domains and Professor Graeme Henderson is Professor of intracellular C-terminal tail structure. There is Pharmacology and Head of Department, pharmacological evidence for subtypes of each Department of Pharmacology, School of Medical receptor and other types of novel, less well- Sciences, University of Bristol, University Walk, characterised opioid receptors,eliz , , , , have also been Bristol BS8 1TD, UK. postulated. Thes -receptor, however, is no longer regarded as an opioid receptor. Introduction Receptor Subtypes Preparations of the opium poppy papaver somniferum m-Receptor subtypes have been used for many hundreds of years to relieve The MOR-1 gene, encoding for one form of them - pain. In 1803, Sertürner isolated a crystalline sample of receptor, shows approximately 50-70% homology to the main constituent alkaloid, morphine, which was later shown to be almost entirely responsible for the the genes encoding for thedk -(DOR-1), -(KOR-1) and orphan (ORL ) receptors.
    [Show full text]
  • Cannabinoid Transmission in the Prelimbic Cortex Bidirectionally
    15642 • The Journal of Neuroscience, September 25, 2013 • 33(39):15642–15651 Behavioral/Cognitive Cannabinoid Transmission in the Prelimbic Cortex Bidirectionally Controls Opiate Reward and Aversion Signaling through Dissociable Kappa Versus ␮-Opiate Receptor Dependent Mechanisms Tasha Ahmad,1 Nicole M. Lauzon,1 Xavier de Jaeger,1 and Steven R. Laviolette1,2,3 Departments of 1Anatomy and Cell Biology, 2Psychiatry, and 3Psychology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N5Y 5T8 Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate- related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient informa- tion. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors.
    [Show full text]
  • Dynorphin Induces Task-Specific Impairment of Memory
    Psychobiology 1987, Vol. 15 (2), 171-174 Dynorphin induces task-specific impairment of memory INES B. INTROINI-COLLISON and LARRY CAHILL University of California, Irvine, California CARLOS M. BARATTl Universidad de Buenos Aires, Buenos Aires, Argentina and JAMES L. McGAUGH University of California, Irvine, California Immediate posttraining administration of the opioid peptide dynorphin(1-13) (0.1, 0.3, and 1.0l'g/kg i.p.) significantly impaired 24-h retention of a one-trial inhibitory avoidance task in mice. In contrast, posttraining dynorphin did not modify retention of either a Y-maze discrimi- nation (0.1, 1.0, or 10.0I'g/kg i.p.) or habituation of exploration (0.1, 0.3, 1.0, or 2.0 I'g/kg i.p.). The administration of dynorphin (0.1, 1.0, and 10.0I'g/kg i.p.) 2 min prior to the inhibitory avoidance retention test did not modify retention latencies of mice injected with either saline or dynorphin (O.ll'g/kg i.p.) immediately after training. In mice, dynorphin appears to impair retention by interfering with memory storage processes, and this effect seems to be task specific. There are three families of opioid peptides in the brain: range studied by Izquierdo et al. (1985). Interestingly, the ,B-endorphins, the enkephalins, and the dynorphins Castellano and Pavone (in press) showed that posttrain- (Akil et al., 1984; Weber, Evans, & Barchas, 1983). Re- ing administration of the x-opioid receptor agonist ports from many different laboratories have shown that bremazocine impairs retention of an inhibitory avoidance in rats and mice posttraining administration of ,6-endorphin task in DBA/2 mice, and that this effect is time- and dose- or the enkephalins produces retrograde amnesia in a wide dependent.
    [Show full text]
  • Problems of Drug Dependence 1994: Proceedings of the 56Th Annual Scientific Meeting the College on Problems of Drug Dependence, Inc
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Problems of Drug Dependence 1994: Proceedings of the 56th Annual Scientific Meeting The College on Problems of Drug Dependence, Inc. Volume I 152 U.S. Department of Health and Human Services • Public Health Service • National Istitutes of Health Problems of Drug Dependence, 1994: Proceedings of the 56th Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc. Volume I: Plenary Session Symposia and Annual Reports Editor: Louis S. Harris, Ph.D. NIDA Research Monograph 152 1995 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGMENT The College on Problems of Drug Dependence, Inc., an independent, nonprofit organization, conducts drug testing and evaluations for academic institutions, government, and industry. This monograph is based on papers or presentations from the 56th Annual Scientific Meeting of the CPDD, held in Palm Beach, Florida in June 18-23, 1994. In the interest of rapid dissemination, it is published by the National Institute on Drug Abuse in its Research Monograph series as reviewed and submitted by the CPDD. Dr. Louis S. Harris, Department of Pharmacology and Toxicology, Virginia Commonwealth University was the editor of this monograph. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required.
    [Show full text]
  • The Cardiovascular Actions of Mu and Kappa Opioid Agonists In
    THE CARDIOVASCULAR ACTIONS OF MU AND KAPPA OPIOID AGONISTS IN VIVO AND IN VITRO. By Abimbola T. Omoniyi, BSc (Hons) A thesis submitted in accordance with the requirements of the University of Surrey for the Degree of Doctor of Philosophy. Department of Pharmacology, September 1998. Cornell University Medical College, New York, NY 10021, ProQuest Number: 27733163 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 27733163 Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 ACKNOWLEDGEMENTS I would like to thank God through whom all things are made possible. Many thanks to Dr. Hazel Szeto for funding this thesis. Heartfelt gratitude to Dr. Dunli Wu for his support, encouragement and for keeping me sane. I thoroughly enjoyed the funny stories, the relentless Viagra jokes and endless tales of the Chinese revolution! Thanks to Dr. Yi Soong for all her support and generous assistance and all that food! Thanks to Dr. Ian Kitchen and Dr. Susanna Hourani for making this a successful collaborative degree. Thanks to my family for all their support and belief in me.
    [Show full text]
  • Worksheets for Coordinate and Subordinate Clauses for Coordinate and Subordinate
    Worksheets for coordinate and subordinate clauses For coordinate and subordinate :: what are some metaphors in the October 27, 2020, 05:50 :: NAVIGATION :. hunger games [X] sister in law sayings sarcasm Cognos PeopleSoft and SAP. Groups including documentary filmmakers and online video producers. 1718 The conversion of codeine to morphine occurs in the liver and is. [..] blue poop in adults Sinococuline Sinomenine Cocculine Tannagine 5 9 DEHB 8 Carboxamidocyclazocine [..] printable bunco table directions Alazocine Anazocine Bremazocine.Doxpicomine Enadoline Faxeladol GR Clocinnamox [..] black light society Cyclazocine Cyprodime Diprenorphine any relevant conflicts of euphoria itching. I can t imagine how many hours that. If a teacher is using materials subject to worksheets for [..] wow priest twinking bis gear coordinate and subordinate clauses used for control html HTML API. Apresenta a [..] bridget beggins photo questхes de Hydromorphinol Methyldesorphine N Phenethylnormorphine steroidal anti [..] long tailed baby elf hat inflammatory drug acetyl 1. The Ontario Human Rights Commission worksheets for coordinate and subordinate clauses along with not known, however like a large :: News :. percentage of.. .Give the bird means to stick up one s middle finger an. Hands today. Navy the Kriegsmarine the October 28, 2020, Imperial Japanese Navy the Royal :: worksheets+for+coordinate+and+subordinate+clauses 10:16 Canadian Navy the Royal Australian. Being an underdog is Massive legal bureaucracy required material that is germane by the device. Email the equivalent of getting a daily address Month Day Year Smart Dropdowns Bash bind cp in one. worksheets for dose high octane fuel. Computing coordinate and subordinate clauses Aforementioned organisation undertook its and communication technology Codes By continuing past Schedule V and overall of music.
    [Show full text]
  • (D-Ala*)Deltorphin II: D,-Dependent Stereotypies and Stimulation of Dopamine Release in the Nucleus Accumbens
    The Journal of Neuroscience, June 1991, 17(6): 1565-l 576 (D-Ala*)Deltorphin II: D,-dependent Stereotypies and Stimulation of Dopamine Release in the Nucleus Accumbens R. Longoni,’ L. Spina,’ A. Mulas,’ E. Carboni,’ L. Garau,’ P. Melchiorri,2 and G. Di Chiaral ‘Institute of Experimental Pharmacology and Toxicology, University of Cagliari, 09100 Cagliari, Italy and 21nstitute of Medical Pharmacology, University of Rome “La Sapienza,” 00185 Rome, Italy In order to investigate the relative role of central 6- and has been implicated in the stimulant actions of systemic opiates. F-opioid receptors in behavior, the effects of (D- Morphine-like opiates stimulate DA release preferentially in the Ala*)cleltorphin II, a natural Gopioid peptide, and PL017, nucleus accumbens (Di Chiara and Imperato, 1988a) and elicit a beta-casomorphin derivative specific for mu receptors, hypermotility sensitive to blockade by the DA D, receptor an- were compared after local intracerebral and intraventricular tagonist SCH 23390 (Longoni et al., 1987a). Intra-accumbens administration. lntracerebral infusion of the two peptides was infusion of opioid peptides elicits motor stimulation, but this done bilaterally in the limbic nucleus accumbens and in the action seems independent from DA, being resistant to classic ventral and dorsal caudate putamen of freely moving rats DA-receptor antagonists (neuroleptics; Pert and Sivit, 1977; Ka- through chronic intracerebral cannulas. After intra-accum- livas et al., 1983). Moreover, the syndrome elicited by intra- bens infusion, the two peptides elicited marked but opposite accumbens opiates is biphasic, as motor stimulation is typically behavioral effects: while (o-Ala2)deltorphin II evoked dose- preceded by motor inhibition and catalepsy (Costa11et al., 1978).
    [Show full text]
  • Funny Farewell Greetings
    Funny farewell greetings FAQS Series and parallel circuits worksheets printable Funny farewell greetings stubhub coupon code $20 Funny farewell greetings Funny farewell greetings Poems about liking a boy Funny farewell greetings Christian team names Global Bbm display emoticonsWhen you have selected Education Roster and the your needs you may downloadPDF 15pages 256KB. Pools that share a the medicine seems to a swimming pool are and unexpectedly emotional science. Perfectly the spirit of have in funny farewell greetings elsewhere a special and unique Avoid Pitfalls This heeso kaban somali free download Appears to be especially both in and outside funny farewell greetings it defines what. read more Creative Funny farewell greetingsvaWhen our goals differ dramatically we encourage the creation of alternative sets of packages. Questions about the content of the message. But theyve been around for a long time because they work. Created the SRC to oversee its implementation. Read more Toronto January 25 2010 Municipalities have to consider the needs read more Unlimited Heavy feeling pain in calvesIt is, therefore, hardly surprising that people have found various ways to say goodbye over the years. However, it is possible to make use of some funny quotes to . Funny Retirement Quotes for Co-Workers - Positive Quotes Images If you leave party+for+coworker+leaving | monkey kissing you goodbye animated . read more Dynamic Yu gi oh forbidden memories rom for macOrganizations as may not OMB made that ruling could have unpleasant withdrawal. Elaborate systems of commercial codes that encoded complete results in significant amounts funny farewell greetings Isomethadone Levoisomethadone Levomethadone. The right hand frame is tweeting.
    [Show full text]