Morphology Chapter, Explained in the Phylogeny Chapter, Ie Including Sect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gastrodia Molloyi
Gastrodia molloyi COMMON NAME Molloy’s potato orchid SYNONYMS None - first described in 2016 FAMILY Orchidaceae AUTHORITY Gastrodia molloyi Lehnebach et J.R.Rolfe FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Orchids BRIEF DESCRIPTION A terrestrial, saprophytic orchid (all parts without chlorophyll). Plants with tubers, producing numerous stems. Flowers numerous pendulous, golden-brown to dark green, fragrant. Under Kunzea robusta, Wairarapa. Photographer: Jeremy Rolfe DISTRIBUTION Endemic. New Zealand. North, South and Stewart Island (widespread from South Auckland southwards) HABITAT Gastrodia molloyi is often found in disturbed sites including, willow car, flood-prone waterways, tracksides where it may be found growing amongst exotic weeds and grasses, and in forests (especially silver beech (Lophozonia menziesii) forest. It is also known from indigenous forests dominated by tawa (Beilschmiedia tawa), rawirinui (Kunzea robusta), Nothofagaceae and scrublands dominated by Kunzea species or kahikato Perianth cut away to show column and (Leptospermum scoparium agg.). labellum. Wairarapa. Photographer: Jeremy Rolfe FEATURES Terrestrial, saprophytic, leafless, achlorophyllous herb. Rhizome tuberous, pale brown to blackish, often covered in papery scales. Plant 296–800 mm tall at flowering. Stem solitary, glabrous, golden brown to pale pink-greyish, with gray-whitish longitudinal streaks; 1.8–8.5 mm diameter. Stem bracts 3–5, papery, glabrous, sheathing. Inflorescence erect, terminal, flowers 12–55, densely arranged, non-resupinated, nectarless, scented, erect when developing and pendulous at anthesis. Floral bract papery, glabrous, deltoid, apex acute, 3.3–9.3 × 1.8–2.7 mm. Pedicel 1.1–6.6 mm long. Perianth tube 7.7–14.1 × 2.3–7.6 mm, greenish gold to golden brown, surface with pale green to gray wart-like elevations. -
Licuati Forest Reserve, Mozambique: Flora, Utilization and Conservation
LICUATI FOREST RESERVE, MOZAMBIQUE: FLORA, UTILIZATION AND CONSERVATION by Samira Aly Izidine Research Project Report submitted in partial fulfilment of the requirements for the taught degree Magister Scientiae (Systematics and Conservation Evaluation) in the Faculty of Natural & Agricultural Sciences Department of Botany (with Department of Zoology & Entomology) University of Pretoria Pretoria Supervisor: Prof. Dr. A.E.van Wyk May 2003 © University of Pretoria Digitised by the Open Scholarship & Digitisation Programme, University of Pretoria, 2016. I LICUATI FOREST RESERVE, MOZAMBIQUE: FLORA, UTILIZATION AND CONSERVATION Samira Aly lzidine 2003 © University of Pretoria Digitised by the Open Scholarship & Digitisation Programme, University of Pretoria, 2016. To the glory of God and to the memory of my dear father, Aly Abdul Azize Izidine, 6-11-1927 - 7-03-2003 A gl6ria de Deus e em memoria ao meu querido pai, Aly Abdul Azize Izidine, 6-11-1927 - 7-03-2003 © University of Pretoria Digitised by the Open Scholarship & Digitisation Programme, University of Pretoria, 2016. TABLE OF CONTENTS DEDICATION .................................................................................................. i LIST OF FIGURES AND TABLES .............................................................. iv LIST OF FIGURES AND TABLES ............................................................... v ABSTRACT ..................................................................................................... 1 PROJECT PROPOSAL .................................................................................. -
An Introduction to the Epiphytic Orchids of East Africa
Sphyrarchynchus sp. Cyrtorchis crassifoHa Schltr. AN INTRODUCTION TO THE EPIPHYTIC ORCHIDS OF EAST AFRICA. By W. M. MOREAU AND R. E. MOREAU. C()IYl,tents. 1. Introduction. 2. Nomenclature and classification. 3. General ecology. 4. The orchid flower. 5. Published and unpublished sources of East African records. 6. Tentative field key to the genera. 7. Annotated check-list of species. 1. INTRODUCTION. Over fifteen thousand species of orchids have been described, the vast majority of them tropical, and the greater part of them epiphytic, that is, normally growing on trees without deriving sustenance from them. But little more than ten per cent of the majestic total belong to Tropical Africa and moreover, so far as is known at present, within that area ground orchids predominate over epiphytic in the proportion of more than three to one. There is reason to believe that these figures are a reflection rather of our ignorance than of the truth. Because the Tropical African epiphytic orchids are not characterised by the magni• ficence and opulence of those of other regions, they have not attracted the commercial collector and certainly are most imperfectly known. Yet the local orchids display a delightful diversity of adaptation and of form. None are flamboyant, but many are beautiful, some are exquisitely dainty and a few are bizarre. They appeal to the same feelings and are capable of arousing the same enthusiasms as succulents or alpine plants. Moreover, anyone who takes the comparatively little trouble required to collect and grow them has the additional satisfaction of knowing that he is contributing to scientific knowledge. -
How to Cite Complete Issue More Information About This Article Journal's Webpage in Redalyc.Org Scientific Information System Re
Lankesteriana ISSN: 1409-3871 Lankester Botanical Garden, University of Costa Rica Pedersen, Henrik Æ.; Find, Jens i.; Petersen, Gitte; seberG, Ole On the “seidenfaden collection” and the multiple roles botanical gardens can play in orchid conservation Lankesteriana, vol. 18, no. 1, 2018, January-April, pp. 1-12 Lankester Botanical Garden, University of Costa Rica DOI: 10.15517/lank.v18i1.32587 Available in: http://www.redalyc.org/articulo.oa?id=44355536001 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative LANKESTERIANA 18(1): 1–12. 2018. doi: http://dx.doi.org/10.15517/lank.v18i1.32587 ON THE “SEIDENFADEN COLLECTION” AND THE MULTIPLE ROLES BOTANICAL GARDENS CAN PLAY IN ORCHID CONSERVATION HENRIK Æ. PEDERSEN1,3, JENS I. FIND2,†, GITTE PETERSEN1 & OLE SEBERG1 1 Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1353 Copenhagen K, Denmark 2 Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark 3 Author for correspondence: [email protected] † Deceased 2nd December 2016 ABSTRACT. Using the “Seidenfaden collection” in Copenhagen as an example, we address the common view that botanical garden collections of orchids are important for conservation. Seidenfaden collected live orchids all over Thailand from 1957 to 1983 and created a traditional collection for taxonomic research, characterized by high taxonomic diversity and low intraspecific variation. Following an extended period of partial neglect, we managed to set up a five-year project aimed at expanding the collection with a continued focus on taxonomic diversity, but widening the geographic scope to tropical Asia. -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
Nervilia Cumberlegei (Orchidaceae), a Newly Recorded Orchid from Myanmar
Bull. Natl. Mus. Nat. Sci., Ser. B, 47(1), pp. 41–44, February 22, 2021 Nervilia cumberlegei (Orchidaceae), a Newly Recorded Orchid from Myanmar Myo Min Latt1,2, Byung Bae Park1 and Nobuyuki Tanaka3,* 1 Department of Environment and Forest Resources, College of Agriculture and Life Science, Chungnam National University, Republic of Korea 2 Department of Environmental Economic, Policy and Management, University of Forestry and Environmental Sciences, Yezin, Myanmar 3 Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan *E-mail: [email protected] (Received 6 November 2020; accepted 23 December 2020) Abstract Nervilia cumberlegei (Orchidaceae) is recorded in Myanmar for the first time. A description, locality information and photographs are provided. Thus far N. cumberlegei is known only from Taiwan and Thailand. This discovery in Myanmar represents the western edge of the species distribution. Key words: Burma, section Linervia, Tanintharyi, taxonomy, terrestrial orchid. (Pridgeon et al., 2005; Tang et al., 2018) and Introduction flowers followed by a vegetative stem bearing a Nervilia Comm. ex Gaudich. is commonly single photosynthetic leaf (Niissalo et al., 2020). known as ‘shield orchid’. Most species grow in Nervilia plants have antioxidant and antibacterial forested habitats and are shade-demanders (Gale properties (Ruthisha et al., 2018) and are used as et al., 2018). The genus Nervilia is most diverse traditional medicine. Medicinal orchids are con- in tropical Asia, although it is widely distributed siderably threatened by anthropogenic impacts in the Old World tropics, from Australasia and such as habitat destruction, and illegal collection the South-west Pacific Islands to sub-Saharan for commercial and subsistence uses (Pant et al., Africa (Pettersson, 1991; Gale et al., 2015, 2002; Pant, 2013). -
Diversity of Orchid Species of Odisha State, India. with Note on the Medicinal and Economic Uses
Diversity of orchid species of Odisha state, India. With note on the medicinal and economic uses Sanjeet Kumar1*, Sweta Mishra1 & Arun Kumar Mishra2 ________________________________ 1Biodiversity and Conservation Lab., Ambika Prasad Research Foundation, India 2Divisional Forest Office, Rairangpur, Odisha, India * author for correspondence: [email protected] ________________________________ Abstract The state of Odisha is home to a great floral and faunistic wealth with diverse landscapes. It enjoys almost all types of vegetations. Among its floral wealth, the diversity of orchids plays an important role. They are known for their beautiful flowers having ecological values. An extensive survey in the field done from 2009 to 2020 in different areas of the state, supported by information found in the literature and by the material kept in the collections of local herbariums, allows us to propose, in this article, a list of 160 species belonging to 50 different genera. Furthermore, endemism, conservation aspects, medicinal and economic values of some of them are discussed. Résumé L'État d'Odisha abrite une grande richesse florale et faunistique avec des paysages variés. Il bénéficie de presque tous les types de végétations. Parmi ses richesses florales, la diversité des orchidées joue un rôle important. Ces dernières sont connues pour leurs belles fleurs ayant une valeurs écologiques. Une étude approfondie réalisée sur le terrain de 2009 à 2020 Manuscrit reçu le 04/09/2020 Article mis en ligne le 21/02/2021 – pp. 1-26 dans différentes zones de l'état, appuyée par des informations trouvées dans la littérature et par le matériel conservé dans les collections d'herbiers locaux, nous permettent de proposer, dans cet article, une liste de 160 espèces appartenant à 50 genres distincts. -
Phytogeographic Review of Vietnam and Adjacent Areas of Eastern Indochina L
KOMAROVIA (2003) 3: 1–83 Saint Petersburg Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina L. V. Averyanov, Phan Ke Loc, Nguyen Tien Hiep, D. K. Harder Leonid V. Averyanov, Herbarium, Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov str. 2, Saint Petersburg 197376, Russia E-mail: [email protected], [email protected] Phan Ke Loc, Department of Botany, Viet Nam National University, Hanoi, Viet Nam. E-mail: [email protected] Nguyen Tien Hiep, Institute of Ecology and Biological Resources of the National Centre for Natural Sciences and Technology of Viet Nam, Nghia Do, Cau Giay, Hanoi, Viet Nam. E-mail: [email protected] Dan K. Harder, Arboretum, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, U.S.A. E-mail: [email protected] The main phytogeographic regions within the eastern part of the Indochinese Peninsula are delimited on the basis of analysis of recent literature on geology, geomorphology and climatology of the region, as well as numerous recent literature information on phytogeography, flora and vegetation. The following six phytogeographic regions (at the rank of floristic province) are distinguished and outlined within eastern Indochina: Sikang-Yunnan Province, South Chinese Province, North Indochinese Province, Central Annamese Province, South Annamese Province and South Indochinese Province. Short descriptions of these floristic units are given along with analysis of their floristic relationships. Special floristic analysis and consideration are given to the Orchidaceae as the largest well-studied representative of the Indochinese flora. 1. Background The Socialist Republic of Vietnam, comprising the largest area in the eastern part of the Indochinese Peninsula, is situated along the southeastern margin of the Peninsula. -
Orchid Historical Biogeography, Diversification, Antarctica and The
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the -
(Orchidaceae) from Yakushima Island, Japan
Taiwania 63(3): 220-226, 2018 DOI: 10.6165/tai.2018.63.220 New natural hybrid in the genus Gastrodia: Gastrodia × nippo-uraiensis (Orchidaceae) from Yakushima Island, Japan Kenji SUETSUGU1,*, Tian-Chuan HSU2, Shingo KANEKO3 1. Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan. 2. Herbarium of Taiwan Forestry Research Institute, No. 53, Nanhai Rd., Taipei 100, Taiwan. 3. Faculty of Symbiotic Systems Science, Fukushima University, Kanayagawa 1, Fukushima 960-1296, Japan.. *Corresponding author’s tel: +81-78-803-5713, email: [email protected]. (Manuscript received 8 May 2018; accepted 1 July 2018; online published 11 July 2018) ABSTRACT: We describe a new taxon of Gastrodia (Orchidaceae), G. × nippo-uraiensis from Yakushima Island. Gastrodia × nippo-uraiensis shows similar outer appearances with both G. nipponica and G. uraiensis. It could, however, be easily recognized by the 13–16 mm long perianth tube which is distinctly smaller than G. nipponica (Honda) Tuyama and distinctly larger than G. uraiensis T.C. Hsu & C.M. Kuo. In addition, G. nippo-uraiensis bears mixed or intermediate floral morphological characters between G. nipponica and G. uraiensis. Therefore, this taxon can be considered as a natural hybrid between G. nipponica and G. uraiensis. The morphological characteristics and illustrations of the new taxon, G. nipponica and G. uraiensis are provided. KEY WORDS: Gastrodia, Japan, Mycoheterotroph, Natural hybrid, Orchidaceae, Ryukyu, Taxonomy. INTRODUCTION discovery of several new taxa and distributional records in this region (Ohashi et al. 2008; Suetsugu & Fukunaga Gastrodia Brown (Orchidaceae), a genus of 2018; Suetsugu & Ishida 2011; Suetsugu et al. -
Platanthera Chapmanii: Culture, Population Augmentation, and Mycorrhizal Associations
Platanthera chapmanii: culture, population augmentation, and mycorrhizal associations By Kirsten Poff, B.S. A Thesis In Plant and Soil Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Dr. Jyotsna Sharma Chair of Committee Dr. Scott Longing Dr. John Zak Dr. Mark Sheridan Dean of the Graduate School August, 2016 © 2016, Kirsten Poff Texas Tech University, Kirsten Poff, August 2016 ACKNOWLEDGEMENTS First I would like to thank my mentor and advisor, Dr. Jyotsna Sharma for all of her help and support. She has challenged and encouraged me throughout my program and the duration of this project. Thanks to her, I am light-years ahead of where I was two years ago. Texas Parks and Wildlife is also gratefully acknowledged for funding portions of this study. I also wish to express my gratitude to Dr. John Zak for his enthusiasm and for encouraging my love of microbes. I also gratefully thank Dr. Scott Longing for his advice, and constructive comments. I sincerely thank all three committee members for all the time and energy they have spent on me throughout the duration of my project. I gratefully acknowledge Dr. Jason Woodward for his encouragement and recommendations as well. I also acknowledge Dr. Cynthia McKenney and Mr. Russel Plowman for their support; I now have a passion for teaching, and a much better understanding of what it is like to teach college level courses. I want to also thank Mr. Robby Carlson for his time and technological assistance. -
Redalyc.ARE OUR ORCHIDS SAFE DOWN UNDER?
Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica BACKHOUSE, GARY N. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA Lankesteriana International Journal on Orchidology, vol. 7, núm. 1-2, marzo, 2007, pp. 28- 43 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339813005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 7(1-2): 28-43. 2007. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA GARY N. BACKHOUSE Biodiversity and Ecosystem Services Division, Department of Sustainability and Environment 8 Nicholson Street, East Melbourne, Victoria 3002 Australia [email protected] KEY WORDS:threatened orchids Australia conservation status Introduction Many orchid species are included in this list. This paper examines the listing process for threatened Australia has about 1700 species of orchids, com- orchids in Australia, compares regional and national prising about 1300 named species in about 190 gen- lists of threatened orchids, and provides recommen- era, plus at least 400 undescribed species (Jones dations for improving the process of listing regionally 2006, pers. comm.). About 1400 species (82%) are and nationally threatened orchids. geophytes, almost all deciduous, seasonal species, while 300 species (18%) are evergreen epiphytes Methods and/or lithophytes. At least 95% of this orchid flora is endemic to Australia.