New Insights Into Thorium and Uranium Oxo-Arsenic (III/V) and Oxo-Phosphates (V) Crystal Chemistry”

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into Thorium and Uranium Oxo-Arsenic (III/V) and Oxo-Phosphates (V) Crystal Chemistry” “New insights into thorium and uranium oxo-arsenic (III/V) and oxo-phosphates (V) crystal chemistry” Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Techenischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften Genehmigte Dissertation vorgelegt von Master Na Yu aus Sichuan Berichter: Prof. Dr. rer. nat. Evgeny V. Alekseev Univ. -Prof. Dr. rer. nat. Dirk Bosbach Prof. Dr. Thorsten M. Gesing Univ. -Prof. Dr. rer. nat. Georg Roth Tag der mündlichen Prüfung: 11. Dezember 2015 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar i © Copyright 2015 Na Yu ii NEW INSIGHTS INTO THORIUM AND URANIUM OXO-ARSENIC (III/ V) AND OXO- PHOSPHATES (V) CRYSTAL CHEMISTRY Abstract The fundamental chemistry of actinides is of great interest owing to the diverse number of valence states and complex coordination chemistry of the actinides. The phases based on actinides and oxo-salt fragments have been under thorough investigation in the last decades. These compounds can be widely found in nature and they affect the migration process of actinides in nature. A better understanding of the fundamental coordination chemistry of actinide compounds with oxo-salts of group V elements is not only important for understanding the actinides behavior within the migration process but can also be used to understand actinide properties in phosphate ceramics. Concerning the radioactive issues, the less radioactive early actinides (i.e. U, Th) can be taken as modeling elements to study the crystal chemistry of the transuranic elements (Np, Pu) without the major handling problems. This can be done as Th(IV) has a very similar coordination chemistry with An(IV) and U(VI) can be chosen as a modeling element for transuranic elements in higher valence states. Therefore, a systematic research on the actinides (U, Th) bearing phases with tetrahedral oxo-anions such as phosphates and arsenates have been performed in this work. High temperature (HT) solid state reaction, High pressure high temperature (HP-HT) solid state reaction and the hydrothermal method were the methods of choice for synthesizing actinide bearing oxo-arsenic(III/V) and oxo- phosphorus(V) phases in the past three years. As a result, numerous novel compounds containing actinides were obtained. The structures of all compounds were determined using single crystal X-ray diffraction data. Raman spectroscopy, EDS, DSC and high temperature powder X-ray diffraction (HT-PXRD) measurements were implemented to characterize the chemical and physical properties of the obtained compounds. The core of this dissertation is a fundamental study of the crystal chemistry of actinides (Th, U) oxo-arsenic (III/V) and oxo-phosphate(V) phases that were derived from the before mentioned methods. They can be separated into several main parts according to the structural features: layers in U(VI) phases (chapter 3); cations driving structural diversity of thorium arsenates and n- phosphates (chapter 4 and 5); uranium metaphosphate with (PO3)n polymeric chains (chapter 6); mixed-valent arsenic(III/V) Th compounds obtained under extreme pressure (chapter 7); series of compounds adopting the typical structure type of KTh2(AsO4)3 and presented by IV ATh2(AsO4)3(A= K, Rb, Cs, Ag), LiTh2(PO4)3 and BU 2(PO4)3 (B= Rb, Cs); tri-phosphate and tri- arsenate T3O10 units in the ATh(T3O10) (A= Rb, Cs; T= P, As) family (chapter 7). i CONTENTS FIGURES ........................................................................................................................................... v TABLES ............................................................................................................................................. x ACKNOWLEDGMENTS ...................................................................................................................... i Chapter 1 INTRODUCTION .............................................................................................................. 1 1.1 Overview ................................................................................................................................ 1 1.2 Background I: Structural Chemistry of Uranium and Thorium ............................................. 2 1.2.1 Oxidation States of Uranium and Thorium .................................................................... 2 1.2.2 Coordination Numbers and Coordination Polyhedra of Uranium and Thorium ........... 3 1.3 Background II: Structural Chemistry of Phosphates/Phosphites and Arsenate/ Arsenites .. 5 1.4 Background III: Overview of some known Uranium and Thorium bearing Phosphates/Phosphites and Arsenates/Arsenites ...................................................................... 7 1.5 References ............................................................................................................................. 8 Chapter 2 SYNTHETIC METHODS AND CHARACTERIZATION TECHNIQUES .................................. 11 2.1 Synthetic Methods .............................................................................................................. 11 2.1.1 Hydrothermal Synthetic Method ................................................................................. 11 2.1.2 High Temperature (HT) Solid State Synthesis .............................................................. 11 2.1.3 High-Temperature High-Pressure (HTHP) Synthetic Method ...................................... 12 2.2 Systematic Synthesis of Thorium and Uranium bearing Phosphates and Arsenates ......... 14 2.3 Characterization Techniques ............................................................................................... 17 2.3.1 Single Crystal X-ray Diffraction ..................................................................................... 18 2.3.2 Powder X-ray Diffraction .............................................................................................. 20 2.3.3 Raman and IR Spectroscopy ......................................................................................... 21 2.3.4 Element analysis ........................................................................................................... 22 2.3.5 TG-DCS Experiment ...................................................................................................... 23 2.4 Structure Determination from Single Crystals .................................................................... 24 2.5 Bond Valence Analysis ......................................................................................................... 25 2.6 References ........................................................................................................................... 26 i Chapter 3 TOPOLOGICALLY IDENTICAL, BUT GEOMETRICALLY ISOMERIC LAYERS IN ANHYDROUS Rb[UO2(AsO3OH)(AsO2(OH)2)] AND HYDROUS α- and β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O ....... 27 3.1 Abstract ............................................................................................................................... 27 3.2 Introduction ......................................................................................................................... 27 3.3 Synthesis .............................................................................................................................. 28 3.4 Single Crystal X-ray Diffraction ............................................................................................ 30 3.5 Chemical Composition ......................................................................................................... 32 3.6 Bond Valence Analysis ......................................................................................................... 33 3.7 Structure Description .......................................................................................................... 37 3.8 Graph Representation of Structure Topology, Geometric Isomerism and Topotactic Dehydration Reactions .............................................................................................................. 43 3.9 Raman Spectroscopy ........................................................................................................... 47 3. 10 Conclusions ....................................................................................................................... 49 3.11 References ......................................................................................................................... 50 Chapter 4 MORPHOTROPY AND TEMPERATURE DRIVEN POLYMORPHISM IN A2Th(AsO4)2 (A= Li, Na, K, Rb, Cs) SERIES ...................................................................................................................... 52 4.1 Abstract ............................................................................................................................... 52 4.2 Introduction ......................................................................................................................... 52 4.3 Synthesis .............................................................................................................................. 53 4.4 Single Crystal X-ray Diffraction ............................................................................................ 54 4.5 Chemical Compositions ....................................................................................................... 55 4.6 Pure Powder Samples Preparation and Powder X-ray Diffraction ....................................
Recommended publications
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • New Mineral Names*
    AmericanMineralogM, Volume66, pages 1099-l103,IgEI NEW MINERAL NAMES* LouIs J. Cetnt, MrcHeer FtnrscHnn AND ADoLF Pnssr Aldermanlter Choloallte. I. R. Harrowficl4 E. R. Segnitand J. A. Watts (1981)Alderman- S. A. Williams (1981)Choloalite, CuPb(TeO3)z .HrO, a ncw min- ite, a ncw magnesiumalrrminum phosphate.Mineral. Mag.44, eral. Miaeral. Mag. 44, 55-51. 59-62. Choloalite was probably first found in Arabia, then at the Mina Aldermanite o@urs as minute, very thin" talc-likc crystallitcs La Oriental, Moctczuma, Sonora (the typc locality), and finally at with iuellite and other secondaryphosphates in the Moculta rock Tombstone, Arizona. Only thc Tombstone material provides para- phosphatc deposit near thc basc of Lower Cambrisn limestone genetic information. In this material choloalite occurs with cerus- close to Angaston, ca. 60 km NE of Adelaide. Microprobc analy- site, emmonsite and rodalquilarite in severcly brecciated shale that si.q supplcmented by gravimetric water determination gave MgO has been replaced by opal and granular jarosite. Wet chcmical E.4,CaO 1.2, AJ2O328.4, P2O5 25.9, H2O 36.1%,(totat 100),lead- analysisofcholoalitc from the type locality gave CuO 11.0,PbO ing to the formula Mg5Als2(POa)s(OH)zz.zH2O,where n = 32. 33.0,TeO2 50.7, H2O 3.4,total 98.1%,correspolding closcly to thc Thc powder diffraction pattern, taken with a Guinier camera, can formula in the titlc. Powder pattems of thc mineral from thc three be indexed on an orthorhombic. ccll with a = 15.000(7), D = localities can bc indexcd on the basis of a cubic ccll with a : 8.330(6),c - 26.60(l)A, Z = 2,D alc.2.15 from assumedcell con- l2.5l9A for the material from Mina La Oriental, Z: l2,D c,alc.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • Near-Infrared Spectroscopy of Uranyl Arsenates of the Autunite and Metaautunite Group
    Near-Infrared spectroscopy of uranyl arsenates of the autunite and metaautunite group Ray L. Frost•, Onuma Carmody, Kristy L. Erickson and Matt L. Weier Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. Frost, Ray and Carmody, Onuma and Erickson, Kristy and Weier, Matt (2005) Near- Infrared spectroscopy of uranyl arsenates of the autunite and metaautunite group. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 61(8):1923. Copyright 2005 Elsevier Note: This is the authors’ version of the work. Abstract A suite of uranyl arsenates have been analysed by Near-infrared spectroscopy. The NIR spectra of zeunerite and metazeunerite in the first HOH fundamental overtone are different and the spectra of uranyl arsenates of different origins in the 6000 to 7500 cm-1 region are different. NIR spectroscopy provides a method of determination of the hydration of uranyl arsenates and has implications for the structure of water in the interlayer. Such a conclusion is also supported by the water OH stretching region where considerable differences are observed. NIR is an excellent technique for the study of the autunite minerals and may be used to distinguish between different autunite phases such as the partially dehydrated autunites for example zeunerite and metazeunerite. Keywords: abernathyite, autunite, heinrichite, novacekite, zeunerite, metazeunerite, near-IR spectroscopy Introduction The study of uranium minerals is important for the remediation of soils, the solution of environmental problems caused by radioactive materials and the uptake of radionuclides from aqueous systems. Among the many uranium minerals are a group of minerals which are very common worldwide known as the autunite group of minerals.
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume74, pages 1399-1404, 1989 NEW MINERAL NAMES* JonN L. Jamnon CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl, Canada EnNsr A. J. Bunxe Instituut voor Aardwetenschappen,Vrije Universiteite, De Boelelaan 1085, l08l HV, Amsterdam, Netherlands Blatteritex 814-940 (average877). In reflectedlight, slightly to mod- eratelybireflectant, nonpleochroic; variation in color (buff G. Raade,M.H. Mladeck, V.K. Din, A.J. Criddle, C.J. weak to Stanley(1988) Blatterite, a new Sb-bearingMn2+-Mn3+ to pale bufl) is due to bireflectance.Anisotropy member of the pinakiolite group, from Nordmark, distinct, with rotation tints in shadesof grayish-brown. Sweden.Neues Jahrb. Mineral. Mon., l2l-136. No twinning. Orange-redinternal reflections.Reflectance data aregiven at intervals of l0 nm from 400 to 700 nm The empirical formula was calculatedfrom an analysis in air and oil. Reflectanceis about 110/oin air. X, Y, and rce of 2.53 mg of hand-picked by emissionspectrometry Z axescorrespond to a, c, and Daxes, with the optic plane fragments.Recalculation to conform with the gen- crystal parallel to (001). The sign ofbireflectance in air changes eral formula of the pinakiolite group yielded a MnO- from positive (400-450 nm) to negative (470-700 nm). MnrO, distribution, confirmed by a wet-chemical analy- The sign of birefringenceis positive from 400 to 520 nm, sis on 960 pg of material.The result is MgO 13.0,FerO, and negative from 520 to 700 nm. Dispersion r < v. 3.48,MnO 35.1,MnrOr 22.2,SbrO3 11.4, B2O3 14.4,to- Color valuesare also given.
    [Show full text]
  • Unclassified Unclassified
    I-507 UNCLASSIFIED Subject Category: GEOLOGY AND MINERALOGY DEPARTMENT OF THE INTERIOR CONTRIBUTION TO THE CRYSTALLOGRAPHY OF URANIUM MINERALS By Gabrielle Donnay J. D. H. Donnay This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey standards and nomenclature. April 1955 United State s. Geological Survey . Washington, D. C. Prepared by the Geological Survey for the UNITED STATES ATOMIC ENERGY COMMISSION Technical Information Service, Oak Ridge, Tennessee 33376 UNCLASSIFIED The Atomic Energy Commission makes no representation or warranty as to the accuracy or usefulness of the Information or statements contained in this report, or that the use of any Information, apparatus, method or process disclosed In this report may not Infringe privately-owned rights. The Commission assumes no liability with respect to the use of, or for damages resulting from the use of, any Information, apparatus, method or process disclosed In this report. This report has been reproduced directly from the best available copy. Printed in USA, Price 30 cents. Available from the Office of Technical Services, Department of Commerce, Wash­ ington 25, D. C. UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CONTRIBUTION TO THE CRYSTALLOGRAPHY OF URANIUM MINERALS* By GabrieUe Donnay and J. D. H. Donnay April 1955 Trace Elements Investigations Report 507 *This report concerns vork done partly on "behalf of the Division of Raw Materials of the U. -S. Atomic Energy Commission. CONTENTS Page Abstract ..»..•. »...«..... D o..».«o.<»..o.«-...*...«-*o.. ..••«.. •••.. **• IntrOdUCtiOn »o»o«o»»oooooo»ooooooooco»ooo.oo.ooo. oooo.ooo... 5 An integrating precession technique ooooo.ooo..oo.
    [Show full text]
  • Alt I5LNER&S
    4r>.'44~' ¶4,' Alt I5LNER&SI 4t *vX,it8a.rsAt s 4"5' r K4Wsx ,4 'fv, '' 54,4 'T~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~' 4>i4^ 44 4 r 44,4 >s0 s;)r i; X+9;s tSiX,.<t;.W.FE0''¾'"',f,,v-;, s sHteS<T^ 4~~~~~~~~~~~~~~~~~~~~'44'" 4444 ;,t,4 ~~~~~~~~~' "e'(' 4 if~~~~~~~~~~0~44'~"" , ",4' IN:A.S~~ ~ ~ C~ f'"f4444.444"Z'.4;4 4 p~~~~~~~~~~~~~~~~~~~44'1s-*o=4-4444's0zs*;.-<<<t4 4 4 A'.~~~44~~444) O 4t4t '44,~~~~~~~~~~i'$'" a k -~~~~~~44,44.~~~~~~~~~~~~~~~~~~44-444444,445.44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.V 4X~~~~~~~~~~~~~~4'44 44 444444444.44. AQ~~ ~ ~~~~, ''4'''t :i2>#ZU '~f"44444' i~~'4~~~k AM 44 2'tC>K""9N 44444444~~~~~~~~~~~,4'4 4444~~~~IT fpw~~ ~ ~ ~ ~ ~ ~ 'V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ae, ~~~~~~~~~~~~~~~~~~~~~~2 '4 '~~~~~~~~~~4 40~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 4' N.~~..Fg ~ 4F.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " ~ ~ ~ 4 ~~~ 44zl "'444~~474'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ &~1k 't-4,~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :"'".'"~~~~~~~~~~~~~~~~~"4 ~~ 444"~~~~~~~~~'44*#"44~~~~~~~~~~4 44~~~~~'f"~~~~~4~~~'yw~~~~4'5'# 44'7'j ~4 y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~""'4 1L IJ;*p*44 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~44~~~~~~~~~~~~~~~~~~~~1 q A ~~~~~ 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~W~~k* A SYSTEMATIC CLASSIFICATION OF NONSILICATE MINERALS JAMES A. FERRAIOLO Department of Mineral Sciences American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 172: ARTICLE 1 NEW YORK: 1982 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 172, article l, pages 1-237,
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • And Shewanella Putrefaciens Surfaces in the Presence of As(V) Using Extended X-Ray Absorption Fine Structure Spectroscopy
    American Journal of Innovative Research and Applied Sciences. ISSN 2429-5396 I www.american-jiras.com ORIGINAL ARTICLE INVESTIGATING THE MECHANISMS OF U(VI) SORPTION ONTO FE(0) AND SHEWANELLA PUTREFACIENS SURFACES IN THE PRESENCE OF AS(V) USING EXTENDED X-RAY ABSORPTION FINE STRUCTURE SPECTROSCOPY 1* | Clement N’zau Umba-di-Mbudi | 1. Université de Kinshasa | Département de geosciences | Groupe Geo-Hydro-Energie | Kinshasa, RD Congo | | Received May 19, 2020 | | Accepted May 26, 2021 | | Published June 01, 2021 | | ID Article | Clement-Ref6-ajira210521| ABSTRACT Background: Sorption processes control the mobility, biodisponibility, bio-transformation, speciation and ultimately the toxicity of metals and metalloids in the subsurface. Methods: This paper analyses the electronic and geometric structure of solid samples of uranium onto scrap metallic iron and the versatile bacterium Shewanella putrefaciens surfaces in the presence of arsenic by means of U L3 and As K- edge extended X-ray absorption fine structure (EXAFS) measurements prepared by batch sorption experiments. Results: This analysis complements a companion XANES fingerprinting investigation both aiming at uncovering the underlying major mechanism controlling the state of the uranium atoms. The sorption experiment samples comprise of the systems Fe(0)- 0.1 mM U, Fe(0)-0.1 mM U-0.1 mM As and the anoxic Fe(0)-0.1 mM U-0.1 mM As-DSMZ Shewanella putrefaciens strain 6067 at concentration of two optical density units (600 nm) equilibrated for 24 hours in the dark without shaking. EXAFS spectra evaluation confirms the presence and prevalence of respectively U(VI)-O/O-OH axial and equatorial bonds in the mono-component uranium system and both U(VI)-O/O-OH and tetrahedron As(V)-(O,OH) in the bi-components uranium–arsenic systems sorbed onto scrap metallic iron and Shewanella putrefaciens surfaces.
    [Show full text]
  • Lnd Thorium-Bearing Minerals IQURTH EDITION
    :]lossary of Uranium­ lnd Thorium-Bearing Minerals IQURTH EDITION y JUDITH W. FRONDEL, MICHAEL FLEISCHER, and ROBERT S. JONES : EOLOGICAL SURVEY BULLETIN 1250 1list of uranium- and thorium-containing vtinerals, with data on composition, type f occurrence, chemical classification, ~nd synonymy NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 67-278 For sale by the Superintendent of Documents, U.S. Government Printing, Office Washington, D.C. 20402 - Price 30 cents (paper cover) CONTENTS Page Introduction _ _ __ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ __ __ _ __ _ _ _ _ _ _ __ __ _ _ __ __ __ _ _ __ 1 Chemical classification of the uranium and thorium minerals____________ 5 A. Uranium and thorium minerals _ _ __ _ __ __ _ __ _ _ __ _ __ __ _ _ _ __ _ _ __ __ _ _ 10 B. Minerals with minor amounts of uranium and thorium______________ 50 C. Minerals reported to contain uranium and thorium minerals as im- purities or intergrowths_______________________________________ 61 Index____________________________________________________________ 65 In GLOSSARY OF URANIUM- AND THORIUM-BEARING MINERALS FOURTH EDITION By JuDITH W. FRONDEL, MicHAEL FLEISCHER, and RoBERTS. JoNES INTRODUCTION The first edition of this work was published as U.S. Geological Survey Circular 74 in April1950, the second edition as Circular 194 in February 1952, and the third edition in 1955 as U. S.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 89, pages 249–253, 2004 New Mineral Names* JOHN L. JAMBOR1,† AND ANDREW C. ROBERTS2 1Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa K1A 0E8, Canada ARTSMITHITE* analysis gave BaO 47.66, SiO2 36.38, BeO (by AA) 14.90, A.C. Roberts, M.A. Cooper, F.C. Hawthorne, R.A. Gault, J.D. sum 98.94 wt%, corresponding to Ba1.03Be1.97Si2.00O7.00. The Grice, A.J. Nikischer (2003) Artsmithite, a new Hg1+–Al mineral forms radial aggregates and platy to prismatic crystals phosphate–hydroxide from the Funderburk prospect, Pike that are elongate [001] and up to 1 × 4 × 20 mm, typically flattened on {100} or less commonly on {010}. Observed forms County, Arkansas, U.S.A. Can. Mineral., 41, 721–725. – are {100}, {010}, {201}, and {201}, with less common {610}, – {101}, and {101}. Colorless, transparent, vitreous luster, brittle, Electron microprobe analysis gave Hg2O 78.28, Al2O3 5.02, H = 6½, perfect {100} and less perfect {001} and {101} cleav- P2O5 11.39, H2O (calc.) 1.63, sum 96.32 wt%, from which the 3 structure-derived formula corresponds to Hg1+ Al P ages, Dmeas = 3.97(7), Dcalc = 4.05 g/cm for Z = 2. Optically 4 .00 1.05 1.71 α β γ O H , generalized as Hg Al(PO ) (OH) , where x = 0.26. biaxial positive, = 1.698(3), = 1.700(3), = 1.705(5), 2Vmeas 8.74 1.78 4 4 2–x 1+3x ∧ ∧ The mineral occurs as a matted nest of randomly scattered fi- = 70(10), 2Vcalc = 65°, orientation Z = b, X a = 6°, Y c = 5– bres, elongate [001] and some >1 mm in length, with 6°.
    [Show full text]
  • New Mineral Names
    American Mineralogist, Volume 74, pages 1399-1404,1989 NEW MINERAL NAMES. JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGl, Canada ERNST A. J. BURKE Instituut voor Aardwetenschappen, Vrije Universiteite, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands Blatterite* 814-940 (average 877). In reflected light, slightly to mod- G. Raade, M.H. Mladeck, V.K. Din, AJ. Criddle, c.J. erately bireflectant, nonpleochroic; variation in color (buff Stanley (1988) Blatterite, a new Sb-bearing Mn2+-Mn3+ to pale buff) is due to bireflectance. Anisotropy weak to member of the pinakiolite group, from Nordmark, distinct, with rotation tints in shades of grayish-brown. Sweden. Neues Jahrb. Mineral. Mon., 121-136. No twinning. Orange-red internal reflections. Reflectance data are given at intervals of 10 nm from 400 to 700 nm The empirical formula was calculated from an analysis in air and oil. Reflectance is about 11% in air. X, Y, and by ICPemission spectrometry of 2.53 mg of hand-picked Z axes correspond to a, C,and b axes, with the optic plane crystal fragments. Recalculation to conform with the gen- parallel to (001). The sign of bireflectance in air changes eral formula of the pinakiolite group yielded a MnO- from positive (400-450 nm) to negative (470-700 nm). Mn203 distribution, confirmed by a wet-chemical analy- The sign of birefringence is positive from 400 to 520 nm, sis on 960 }Lgof material. The result is MgO 13.0, Fe203 and negative from 520 to 700 nm. Dispersion r < v. 3.48, MnO 35.1, Mn203 22.2, Sb203 11.4, B203 14.4, to- Color values are also given.
    [Show full text]