Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned American Mineralogist, Volume74, pages 1399-1404, 1989 NEW MINERAL NAMES* JonN L. Jamnon CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl, Canada EnNsr A. J. Bunxe Instituut voor Aardwetenschappen,Vrije Universiteite, De Boelelaan 1085, l08l HV, Amsterdam, Netherlands Blatteritex 814-940 (average877). In reflectedlight, slightly to mod- eratelybireflectant, nonpleochroic; variation in color (buff G. Raade,M.H. Mladeck, V.K. Din, A.J. Criddle, C.J. weak to Stanley(1988) Blatterite, a new Sb-bearingMn2+-Mn3+ to pale bufl) is due to bireflectance.Anisotropy member of the pinakiolite group, from Nordmark, distinct, with rotation tints in shadesof grayish-brown. Sweden.Neues Jahrb. Mineral. Mon., l2l-136. No twinning. Orange-redinternal reflections.Reflectance data aregiven at intervals of l0 nm from 400 to 700 nm The empirical formula was calculatedfrom an analysis in air and oil. Reflectanceis about 110/oin air. X, Y, and rce of 2.53 mg of hand-picked by emissionspectrometry Z axescorrespond to a, c, and Daxes, with the optic plane fragments.Recalculation to conform with the gen- crystal parallel to (001). The sign ofbireflectance in air changes eral formula of the pinakiolite group yielded a MnO- from positive (400-450 nm) to negative (470-700 nm). MnrO, distribution, confirmed by a wet-chemical analy- The sign of birefringenceis positive from 400 to 520 nm, sis on 960 pg of material.The result is MgO 13.0,FerO, and negative from 520 to 700 nm. Dispersion r < v. 3.48,MnO 35.1,MnrOr 22.2,SbrO3 11.4, B2O3 14.4,to- Color valuesare also given. Calculation of the Gladstone- tal 99.58 wt0/0.The valency state of Sb is extensivelydis- Dale relationshipswith Sb3* and Sb5+in the analysisled cussedtGladstone-Dale calculations indicate that a for- - to a compatibility index ll (Kp/KJl of, respectively, mula with Sb3* is more acceptablethan one with Sb5*. 0.019 and -0.071 ("superior" and "fair"). The empirical formula of blatterite then is (Mn?j,,- The name is for the German collector Dipl.-Ing. Fritz Mgo (Mn3irrSb8ln, Fe;.io, )- nru(B, 0,.O. ) O r. Sin- rno)r, oo, Blatter (1943- ) who first recognizedthe mineral and pro- gle-crystal and powder-diffraction methods revealed an vided the material described.Type material is deposited orthorhombic unit cell, spacegroup Pnnm or Pnn2, wilh at the Mineralogical-GeologicalMuseum of Oslo, and as a : 37.693(6),b : 12.620(2),c : 6.2541(8)A, Z : 32, specimenBM 1986, l12;E.ll68 in the British Museum D"r": 4.35, D-*. : 4.7(0.4)g,/cm3. The strongestX-ray (Natural History). E.A.J.B. diffraction lines (38 listed) are 5.243(45)(420), 2.2720 6(40)(47 0), 2.6207 (3 5)(840), 2. 604 7( l 00X802), 2.s200(30)(9 40), 2. 08 94(40)(1 2.2.2), I .5 6 3 8(3 5X004), and 1.5406(30X472).The mineral is a member of the pinak- Brokenhillite iolite group. Orthorhombic structures in this group are M. Czank (1987) Structure determination and unrEv in- derived from the pinakiolite structure by chemical twin- vestigation of a new pyrosmalite-group mineral. Col- ning. Blatterite has an a dimension of 37.7 A correspond- lected Abstracts, Fourteenth International Congressof Crystallography(Perth, Australia, C-l 55). ing to the structure type 8l8l . , 4s was confirmed by a preliminary nnreu study. Electron-microprobe analysis [data not given] of crys- Blatterite occurs sporadically in piecesof rich manga- tals from Broken Hill, New South Wales, Australia, gave nosite in the Kittelgruvan mine of the Nordmark orefield, a composition of (MnorrFerooMo.lstro o6)[Si6.oor4 88(OH)0.r2]- Viirmland, Sweden. This material, however, has been (OH)7recl2Er based on 6 Si and divalent Mn and Fe. The dumped there from elsewhere;the Brattforsgruvan mine structural refinement suggeststhat the formula is (Mn, in the same orefield is the most probable source.Blatter- Fe)rr[SiroO.o](OH)2eC1,,.The mineral is hexagonal,space ite occurs as lath-shaped crystals, up to 5 mm long, in groupP6rmc, a: 13.481,c : 14.084A. maganositeor calcite; associatedminerals are katoptrite, Discussion.An unapproved name that should not have pyrochroite, rom6ite(?), and hausmannite. Blatterite beenused. J.L.J. prisms are elongateand striated [001] and have flat, dia- mond-shapedcross-sections. The prism form is {ll0}, with interfacial anglesof 37" and I 43". Color black, streak Cetineite* brown, luster metallic to submetallic,brittle, perfect {001} (1987) a new antimony cleavage,imperfect {100} parting,H about 6, VHNlso: C. Sabelli,G. Vezzalini Cetineite, oxide-sulfidemineral from Cetine mine, Tuscany,Italy. Neues Jahrb. Mineral. Mon., 419425. * Beforepublication, minerals marked with an asteriskwere approvedby the commissionon New Minerals Tuftsoforange-redacicularcrystals,elongate[001]and Na-es, InternationalMineralogical Association. ""iMi";;;i up to 15 mm in length and 15 pm in diameter, occur in 0003-o04x/89/ll 12-1399$02.00 1399 1400 NEW MINERAL NAMES slagcavities in the dumps of the Cetine antimony deposit, elongation,a : 2.45,0 : 2.50,y : 2.65,2Vz : 65(3)' 20 km southwest of Siena, Tuscany, Italy. Electron-mi- (589nm),Z n a:25o,X A c:21o, distinctdispersion croprobeanalyses, combined with a crystal-structurestudy, r < v. Crystal-structure study showed the mineral to be gaveKrO 6.66,NarO 3.87,SbrO3 81.06, S 7.15,SiO, 0.67, monoclinic, spacegroup P2t; for material fromZod, a: HrO (by difference)4.16, sum 103.57,less O = S 3.57 19.00(3),b:7.982(9), c:6.938(\ A, B: 95.67(llf, wt0/0,corresponding to (K,.rrNa, 57),'35(SbrO3)3 03(SbS3)o.eo- and the diffractometer powder pattern (Co radiation) has (OH).53.2.64HrObased on 7 Sb atoms and omitting Si. the following strongestlines : 3.29(l 00)(221), 3.I 5(94X600), The simplified formula (with x : 0.5 and K:Na : 1.86: 3.| 4(t 00)(202),2.7 28(48)(42r), 2.002(42X8 2 l ), l .9 9 8 (4 s) 1.64)is (K,Na)r*,(Sb,O3)3(SbS3XOH)".(2.8-x)H,O. Or- (023), I .686(32)(640), and I .683(29)(242).The resultsare ange streak, resinous luster, transparent to translucent, in good agreementwith data for synthetic BirTeoO',. {100} cleavage,VHNro : 127-156, nonfluorescent,op- The new name is for ProfessorS. K. Chekhovich of the tically uniaxial positive, weakly pleochroic from orange Polytechnical Institute of AIma-Ata, KazakchskayaSSR. to slightly orange-brown,refractive indices much greater Type specimensof the mineral are in the Fersman Min- than 1.74. Single-crystalX-ray study indicated hexagonal eralogicalMuseum, Moscow. J.L.J. symmetry, spacegroup P6.; cell dimensions refined from the powder pattern (diffractometer,Co radiation) are a : 14.230(2),c: 5.579(l)L; D"u": 4.21g/cm3 for the em- Chernikovite* pirical forinula and Z : 2. Strongestlines of the powder D. Atencio (1988) Chernikovite, a new mineral name for patternare 12.41(80)(100),4.67(54X120), 4. I l(55X300), (H3O)r(UOr)r(POo)r'6HrOsuperseding "hydrogen au- 3.5 8 l (44Xl 2 l ), 3.4 19(42\1 30), 3. 00q7 4X22 t), 2.9| 6(100) tunite." Mineral. Record. 19. 249-252. (131),and 2.69q61)(410).The infraredspectrum has ab- This note is a compilation of data publishedin 1958, sorptionbands at 3400 and 1630 cm-', possiblyindica- 1971, and 1979 in rather inaccessiblesources on three tive ofstructural water; strong absorptionspresent in the occurrencesof a mineral that had been given the mis- 450-600 cm-'region reflectthe presenceofSb-O bonds. leading name "hydrogen autunite" after synthetic mate- The new name is after the locality. The mineral was rial of the same properties and that now is to be called formed by weathering of rock and slag that were accu- chernikovite. Chemical data are listed for synthetic ma- mulated during mining operationsat the beginningof this terial [Ross,Am. Mineral., 40, 917-919 (1955)]:UO, century.Type specimensare in the Museo di Mineralogia, 65.08,P2O5 16.03, HrO 19.33,total 100.44wto/0, consis- Universitir di Firenze, Italy, and the Smithsonian Insti- tent with the ideal formula (H3O)r(UOr)r(PO4)r.6HrO.Of tution, Washington,D.C. the total water of hydration, 9.28 wto/ois lost at I l0 'C. Discussion.The crystal structure was reported in Am. Only spectrographicdata are available for natural mate- Mineral., 73, 398-404, I 988. J.L.J. rial. X-ray powder-diffraction data can be indexed on a tetragonal unit cell, probable spacegroup P4/nmm, btt possibly also P4/ncc or P4r22. Cell parameters of type Chekhovichite* material of Chernikov ( I 9 58) on the basisof P4/nmm are E.M. Spiridonov, I.V. Petrova,L.A. Demina, V.I. Dol- a: 7.030(6),c : 9.034(8)A,z: l, D^.: 3.258e/cm3. gikh, (1987) G.M. Antonyan VestnikMosk. Univ., Geol., The strongest X-ray diffraction lines (41 listed) are 42(6), 7 l-7 6 (English translation of Russian). 5.5l (90X10l), 4.99(l00Xll0), 3.82(80)(l02), 3.54(100) The mineral occurs in fractures in quartz and chalce- (200),3.26 (r00x20 l ), 2.96 (60) (2r I ), 2.I 6(70) (I 04,2r 3, dony in oxidized ores from former mines at Zod (Ar- 222,311),and 2.09(70)(302).The pattern of chernikovite menia) and atZhana-Tyube and North Aksu (North Ka- has a strongreflection at about 9 A, betweenthe 002 peak zakhstan).Electron-microprobe analysesfor the mineral of autunite and the 001 peak of meta-autunite: when the from the respectivelocalities gave Bi 37.2,35.3,36.6;Pb three minerals occur together, identification is easy.The 0.8,0.3,1.4; Sbtr., l.6,tr.; Fe0.
Recommended publications
  • Remediation of Uranium-Contaminated Ground Water at Fry Canyon, Utah
    Science Highlight – November 2003 Remediation of Uranium-contaminated Ground Water at Fry Canyon, Utah Christopher C. Fuller1, John R. Bargar2, James A. Davis1 1U.S. Geological Survey, Water Resources Division, Menlo Park, CA 2Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, CA Clean up of contaminated aquifers is a difficult and expensive problem because of the inaccessibility of the subsurface and the volume of soil and ground water requiring treat- ment. Established technologies such as pump-and-treat and soil excavation are ineffective in most large contamination scenarios because they treat only a small fraction of the con- tamination or are prohibitively expensive (National Research Council, 1999). Perme- able Reactive Barriers (PRBs) are a relatively new technology that offer promise to overcome these obstacles. PRBs are trenches (figure 1) or fence-like arrays of non-pumping wells emplaced in the subsurface at depths of up to 150 feet to intercept the flow of contaminated ground water (Freethey et al., 2002). Fill materials contained within the PRBs react with dissolved contaminants to degrade or sequester them. Thus, in essence, PRBs act as large in-situ filters to clean ground water. PRB technologies offer lower oper- ating costs, are highly energy efficient, and require no surface facilities or ground water pumping/recharge (Freethey et al., 2002; Morrison and Spangler, 1992; Shoemaker et al., 1995). Two commonly proposed PRB contaminant-removal mechanisms are: (a) precipitation reac- tions in which metal contaminants are sequestered within freshly formed mineral phases, and (b) oxidative degradation of contaminants by particulate iron metal. In order for PRBs to be cost-effective they should be effective for an economically viable period (or be replenishable).
    [Show full text]
  • L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
    American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Tyrrellite (Cu, Co, Ni)3Se4 C 2001-2005 Mineral Data Publishing, Version 1
    Tyrrellite (Cu, Co, Ni)3Se4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. Rounded grains and subhedral cubes. Physical Properties: Cleavage: {001}, poor. Fracture: Conchoidal. Tenacity: Brittle. Hardness = ∼3.5 VHN = 343–368 (100 g load). D(meas.) = n.d. D(calc.) = 6.6(2) Optical Properties: Opaque. Color: Pale bronze; pale brassy bronze in reflected light. Streak: Black. Luster: Metallic. R: (400) 41.8, (420) 42.6, (440) 43.5, (460) 44.4, (480) 45.0, (500) 45.5, (520) 45.9, (540) 46.3, (560) 46.5, (580) 46.8, (600) 47.0, (620) 47.3, (640) 47.5, (660) 47.6, (680) 47.8, (700) 48.0 Cell Data: Space Group: Fm3m. a = 10.005(4) Z = 8 X-ray Powder Pattern: Ato Bay, Canada. 1.769 (10), 2.501 (9), 2.886 (7), 3.016 (6), 1.926 (6), 5.780 (4), 3.537 (4) Chemistry: (1) (2) Cu 12.7 13.7 Co 17.7 11.6 Ni 6.9 12.0 Se 62.4 62.0 Total 99.7 99.3 (1) Beaverlodge district [sic; Goldfields district], Canada; by electron microprobe, corresponding to Cu1.01Co1.52Ni0.60Se4.00. (2) Hope’s Nose, England; by electron microprobe; corresponding to Cu1.10Ni1.04Co1.00Se4.00. Mineral Group: Linnaeite group. Occurrence: With other selenides, as the youngest hydrothermal replacements and open space fillings in sheared Precambrian rocks, which also contain uraninite deposits (Goldfields district, Canada). Association: Umangite, klockmannite, clausthalite, pyrite, hematite, chalcopyrite, chalcomenite (Ato Bay, Canada); berzelianite, eucairite, crookesite, ferroselite, bukovite, kruˇtaite, athabascaite, calcite, dolomite (Petrovice deposit, Czech Republic).
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.
    [Show full text]
  • Near-Infrared Spectroscopy of Uranyl Arsenates of the Autunite and Metaautunite Group
    Near-Infrared spectroscopy of uranyl arsenates of the autunite and metaautunite group Ray L. Frost•, Onuma Carmody, Kristy L. Erickson and Matt L. Weier Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. Frost, Ray and Carmody, Onuma and Erickson, Kristy and Weier, Matt (2005) Near- Infrared spectroscopy of uranyl arsenates of the autunite and metaautunite group. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 61(8):1923. Copyright 2005 Elsevier Note: This is the authors’ version of the work. Abstract A suite of uranyl arsenates have been analysed by Near-infrared spectroscopy. The NIR spectra of zeunerite and metazeunerite in the first HOH fundamental overtone are different and the spectra of uranyl arsenates of different origins in the 6000 to 7500 cm-1 region are different. NIR spectroscopy provides a method of determination of the hydration of uranyl arsenates and has implications for the structure of water in the interlayer. Such a conclusion is also supported by the water OH stretching region where considerable differences are observed. NIR is an excellent technique for the study of the autunite minerals and may be used to distinguish between different autunite phases such as the partially dehydrated autunites for example zeunerite and metazeunerite. Keywords: abernathyite, autunite, heinrichite, novacekite, zeunerite, metazeunerite, near-IR spectroscopy Introduction The study of uranium minerals is important for the remediation of soils, the solution of environmental problems caused by radioactive materials and the uptake of radionuclides from aqueous systems. Among the many uranium minerals are a group of minerals which are very common worldwide known as the autunite group of minerals.
    [Show full text]
  • A New Mineralspeciesfromthe Tip Top Pegmatite, Custer County, South Dakota, and Its Relationship to Robertsite'
    Canadian Mineralogist Vol. 27, pp. 451-455 (1989) PARAROBERTSITE, Ca2Mn~+(P04h02.3H20, A NEW MINERALSPECIESFROMTHE TIP TOP PEGMATITE, CUSTER COUNTY, SOUTH DAKOTA, AND ITS RELATIONSHIP TO ROBERTSITE' ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KIA OE8 B. DARKO STURMAN Departmentof Mineralogy,Royal OntarioMuseum, Toronto, OntarioM5S 2C6 PETE J. DUNN Departmentof MineralSciences,SmithsonianInstitution,Washington,D.C. 20560,U.S.A. WILLARD L. ROBERTS* South DakotaSchoolof Minesand Technology,Rapid City, South Dakota57701,U.S.A. ABSTRACT SOMMAIRE Pararobertsite is rare, occurring as thin red transparent La pararobertsite, espece rare, se presente sous forme single plates, or clusters of plates, on whitlockite at the Tip de plaquettes isolees minces et rouge transparent, ou en Top pegmatite, Custer County, South Dakota. Associated agregats de telles plaquettes, situees sur la whitlockite dans minerals are carbonate-apatite and quartz. Individual crys- la pegmatite de Tip Top, comte de Custer, Dakota du Sud. tals are tabular on {100}, up to 0.2 mm long and are less Lui sont associes apatite carbonatee et quartz. Les plaquet- than 0.02 mm in thickness. The streak is brownish red; tes, tabulaires sur {IOO}, atteignent une longueur de 0.2 luster vitreous; brittle; cleavage on {I oo} perfect; indiscer- mm et moins de 0.02 mm en epaisseur. La rayure est rouge nible fluorescence under long- or short-wave ultraviolet brunatre, et l' eclat, vitreux; cassante; clivage {100} par- light; hardness could not be determined, but the mineral fait; fluorescence non-discernable en lumiere ultra-violette apparently is very soft; D (meas.) 3.22 (4), D (calc.) 3.22 (onde courte ou longue); la durete, quoique indeterminee, (for the empirical formula) or 3.21 g/cm3 (for the ideal- semble tres faible; Dmes 3.22(4), Deale 3.22 (formule empi- ized formula).
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Segelerite Camgfe3+(PO4)
    3+ Segelerite CaMgFe (PO4)2(OH) • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are long prismatic and striated k [001], to 1 mm, showing {100}, {010}, {110}, {121}, with a nearly square cross-section. Physical Properties: Cleavage: On {010}, perfect. Hardness = 4 D(meas.) = 2.67 D(calc.) = 2.610 Optical Properties: Semitransparent. Color: Pale green, yellow-green, brownish yellow, chartreuse, may be colorless. Luster: Vitreous. Optical Class: Biaxial (–). Pleochroism: X = Y = colorless; Z = yellow. Orientation: X = b; Y = a; Z = c. Absorption: Z > X = Y. α = 1.618(3) β = 1.635(3) γ = 1.650(3) 2V(meas.) = Large. Cell Data: Space Group: P bca. a = 14.826(5) b = 18.751(4) c = 7.307(1) Z = 8 X-ray Powder Pattern: Tip Top mine, South Dakota, USA. 2.868 (10), 9.31 (9), 5.34 (6), 3.729 (5), 3.421 (5), 4.97 (4), 4.65 (4) Chemistry: (1) (2) P2O5 33.1 35.55 Al2O3 0.4 Fe2O3 16.4 20.00 MnO 0.0 MgO 9.5 10.10 CaO 13.6 14.05 H2O 19.1 20.30 Total 92.1 100.00 (1) Tip Top mine, South Dakota, USA; by electron microprobe, total Fe as Fe2O3, H2Oby • loss on ignition; corresponds to Ca1.04Mg1.00(Fe0.89Al0.05)Σ=0.94(PO4)2.00(OH)0.89 3.84H2O. • (2) CaMgFe(PO4)2(OH) 4H2O. Mineral Group: Overite group. Occurrence: A rare alteration product of triphylite in zoned complex granite pegmatites.
    [Show full text]
  • AUTUNITE from MT. SPOKANE, WASHINGTON* G. W. Lno, U. S. Geologicalsurvey, Menlo Park, California
    THE AMERICAN MINERALOGIST, VOL. 45, JANUARY_FEBRUARY, 1960 AUTUNITE FROM MT. SPOKANE, WASHINGTON* G. W. Lno, U. S. GeologicalSurvey, Menlo Park, California ABSTRACT Near Mt. Spokane, Washington, coarsely crystalline autunite is developed in vugs, fractures, and shear zones in granitic rock. With the exception of dispersed submicroscopic uraninite particles, autunite is the only ore mineral in the deposits. A study of associated granitic rocks reveals that apatite, the most abundant accessory constituent, has been pref- erentially leached and corroded in mineralized zones, suggesting that it may have provided a source of lime and phosphate for the formation of autunite. Leaching may have been effected partly by meteoric water) but more probably was due to the action of ascending connate solutions that may also have carried uranium from unoxidized, as yet undiscovered deposits at depth. Autunite from the Daybreak mine has been studied optically, chemically, and by r-ray diffraction. The autunite is commonly zoned from light-yellow margins to dark-green or black cores, and autunite from the inner zone has a higher specific gravity and higher re- fractive indices than peripheral light material. X-ray powder difiraction patterns of dark and light meta-autunite formed from this autunite show no significant difierences in the d spacings; howevet, diffraction patterns of nine zoned samples each show uraninite to be present in the dark, and absent from the light, phase. UOz and UOs determinations range from 0.66-0.70 per cent and 57.9-58.0 pe( cent, respectively, for light autunite, whereas dark autunite shows a range (in seven determinations) of UOz from 1,2 to 4.0 per cent, and UOs from 55.1 to 58.8 per cent.
    [Show full text]
  • Cation Substitution in Uranyl Phosphates of the Autunite Group: Equilibrium Relations and Crystallization Between Metatorbernite and Metauranocircite
    Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/208 Comunicações Geológicas (2015) 102, Especial I, 27-30 ISSN: 0873-948X; e-ISSN: 1647-581X Cation substitution in uranyl phosphates of the autunite group: equilibrium relations and crystallization between metatorbernite and metauranocircite Substituição catiónica em fosfatos de uranilo do grupo da autunite: relações de equilíbrio e cristalização entre metatorbernite e metauranocircite M. Andrade1, J. Duarte1, I. Martins 1, J. Reis 1, J. Mirão3, M. A. Gonçalves1,2* Artigo original Original article © 2015 LNEG – Laboratório Nacional de Geologia e Energia IP Abstract: Uranyl phosphate minerals play an important role in the 1. Introduction uranium immobilization within weathering and supergene enrichment profiles. This work consists on the morphological, structural and Uranyl phosphate minerals are major constituents in weathered U chemical characterization of natural and synthetic minerals of Cu and Ba deposits and can display a multi-stage evolving history in the – metatorbernite and metauranocircite, respectively. SEM imaging has environment they crystalize. Their importance is two-fold: as revealed an extended range of morphologies, from tabular to rosette-like main U-bearing phases in weathering profiles with potential crystals, with the presence of epitaxial growths. These studies have also economic value (as in Nisa and Tarabau, where natural uranyl revealed natural heterogeneities affected by cationic substitution along phosphates of Cu and Ba were identified; Pinto et al., 2012; preferred crystallographic directions. The experimental results suggest Prazeres, 2011) and as fixing phases of U limiting its long-term, that the precipitation of metatorbernite is easier than metauranocircite. Simulations of the chemical system show that precipitation depends on million-year scale, dispersion in the oxidized surface supersaturation evolution, which in turn in a function of aqueous complex environment.
    [Show full text]