Cation Substitution in Uranyl Phosphates of the Autunite Group: Equilibrium Relations and Crystallization Between Metatorbernite and Metauranocircite

Total Page:16

File Type:pdf, Size:1020Kb

Cation Substitution in Uranyl Phosphates of the Autunite Group: Equilibrium Relations and Crystallization Between Metatorbernite and Metauranocircite Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/208 Comunicações Geológicas (2015) 102, Especial I, 27-30 ISSN: 0873-948X; e-ISSN: 1647-581X Cation substitution in uranyl phosphates of the autunite group: equilibrium relations and crystallization between metatorbernite and metauranocircite Substituição catiónica em fosfatos de uranilo do grupo da autunite: relações de equilíbrio e cristalização entre metatorbernite e metauranocircite M. Andrade1, J. Duarte1, I. Martins 1, J. Reis 1, J. Mirão3, M. A. Gonçalves1,2* Artigo original Original article © 2015 LNEG – Laboratório Nacional de Geologia e Energia IP Abstract: Uranyl phosphate minerals play an important role in the 1. Introduction uranium immobilization within weathering and supergene enrichment profiles. This work consists on the morphological, structural and Uranyl phosphate minerals are major constituents in weathered U chemical characterization of natural and synthetic minerals of Cu and Ba deposits and can display a multi-stage evolving history in the – metatorbernite and metauranocircite, respectively. SEM imaging has environment they crystalize. Their importance is two-fold: as revealed an extended range of morphologies, from tabular to rosette-like main U-bearing phases in weathering profiles with potential crystals, with the presence of epitaxial growths. These studies have also economic value (as in Nisa and Tarabau, where natural uranyl revealed natural heterogeneities affected by cationic substitution along phosphates of Cu and Ba were identified; Pinto et al., 2012; preferred crystallographic directions. The experimental results suggest Prazeres, 2011) and as fixing phases of U limiting its long-term, that the precipitation of metatorbernite is easier than metauranocircite. Simulations of the chemical system show that precipitation depends on million-year scale, dispersion in the oxidized surface supersaturation evolution, which in turn in a function of aqueous complex environment. It is thus important to understand the formation between phosphate and free uranyl ions. An electron probe thermodynamic stability of these phases and how they respond to microanalysis suggests that the failure to precipitate metauranocircite chemical changes of the surrounding environment. Building on may be due to later ionic depletion of the solution media (phosphate and previous knowledge on substitution mechanisms and uranyl), because of the early metatorbernite precipitation. crystallization relations between metatorbernite and Keywords: uranyl phosphates, uranium, metatorbernite, metauranocircite (Pinto et al., 2012; Sanchez-Pastor et al., 2013) metauranocircite, supergene environment. this work further investigates this relation in order to understand what drives the often late substitution of the Cu-phase by the Ba- Resumo: Os fosfatos de uranilo têm um papel determinante na phase, and how they compete for crystallization in the same imobilização do urânio em perfis de meteorização e enriquecimento chemical media. Hence, it’s of major importance to consider the supergénico. O presente trabalho incide na caracterização morfológica, general chemical formula of the autunite group estrutural e química destes minerais, naturais e sintéticos de Cu e/ou Ba – metatorbernite e metauranocircite. Análises em SEM revelaram uma (A(UO2)2(XO4)2·10-12H2O with A = Cu, Ca, Ba, or Mg and X = gama diversificada de morfologias, desde formas tabulares a rosáceas, P or As) in order to understand the cationic substitutions marcadas pela presença de crescimentos epitáxicos. Verificou-se também mentioned above. que os cristais naturais são heterogéneos, com substituições catiónicas ao longo de direcções cristalográficas preferenciais. Os resultados 2. Methods experimentais mostraram haver maior facilidade na precipitação de metatorbernite face à metauranocircite, mesmo nos sistemas com Cu e Ba The crystals studied were crystalized in laboratory in a silica-gel em solução. A modelação do sistema químico mostra que a precipitação é medium as described by Sánchez-Pastor et al. (2013). Also, função da evolução da sobressaturação, dependente da complexação do natural metatorbernite crystals from Musonoi Mine, Kolwezi, fosfato com o uranilo que baixa as respectivas actividades. Atendendo às análises de microssonda electrónica sugere-se que a precipitação de Katanga (Shaba) Province, Democratic Republic of Congo were metauranocircite seja inibida pelo empobrecimento em fosfato e uranilo immersed in silica gel and left to react with a BaCl2 solution. no sistema resultante da cristalização precoce de metatorbernite. Crystals were separated and cleaned for imaging and analysis Palavras-chave: fosfatos de uranilo, urânio, metatorbernite, metaurano- with an Environmental-SEM (HITACHI 3700N) working at 20 circite, ambiente supergénico. kV, a current ranging from 68 to 89 A, and low vacuum conditions (40 Pa) and equipped with a BRUKER Xflash 1Departamento de Geologia, Faculdade de Ciências da Universidade de 5010SDD EDS for qualitative chemical analyses. X-Ray micro- Lisboa, Edifício C6, Piso 4, Campo Grande, 1749-016 Lisboa, Portugal. diffraction of the crystals used a BRUKER Discovery X-ray 2 Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, diffractometer with a Linxeye linear detector, a 0.3 mm Edifício C1, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal. 3Departamento de Geociências e Laboratório HERCULES, Universidade de collimator, and a Göbel mirror. Radiation was generated from a Évora, Palácio do Vimioso, Largo Marquês de Marialva, 8, 7000-809 Évora, Cu-K lamp at 40 kV tension and 40 mA current. Scan ranged Portugal. from 3-75º 2, with 0.05º steps, and 2 s readings per step. Crystal *Autor correspondente/Corresponding author:mgoncalves@ciencias.ulisboa.pt 28 Andrade et al. / Comunicações Geológicas (2015) 102, Especial I, 27-30 mounts were prepared for electron probe microanalysis (EPMA) limited Ba incorporation, as observed in SEM and EPMA (see and the crystals were analyzed for U, P, Cu, Ba, and Si (because below). of the gel medium). Astimex standards were used for Si The crystals from Cu-dominated experiments show (Diopside), Ba (Benitoite), U (UO2), P (Apatite), and Cu aggregates with tabular and micaceous habit, with sizes from 5 to (Cuprite). Analytical conditions used were a beam diameter of 20 10 m, also exhibiting macroscopic green colored dendritic m (reduced to 10m for the smaller crystals), 9 nA current (10 morphologies. Crystals from Ba-dominated experiments show nA for the smaller crystals), and 15 kV voltage. rosette-like morphologies, with sizes from 50 m to more than The porous silica-gel crystallizing environment was modelled 500 m, essentially yellow to brownish-white colored, in with PHREEQC (Parkhurst and Appelo, 1999) for transport and macroscopic acicular, capilar or dendritic aggregates. In the Cu multicomponent counter-diffusion of cationic and anionic species and Ba experiments, the crystals show similar morphologies to in the gel, without precipitation. The database used was the the previously described for both metatorbernite and phreeqc.dat with data on the solubility of metatorbernite and metauranocircite ranging from tabular to spheroidal, with sizes metauranocircite from Cretaz et al. (2013) and Vochten et al. from 50 to 100 m. They form macroscopic aggregates showing (1992), respectively. The U speciation was taken from the dendritic to tabular habits, along crystallization zones, where the llnl.dat. U diffusion coefficient was taken from Awakura et al. abundance and density of small crystals is significant. (1987). 3.2 Chemical features of the crystals 3. Results and Discussion The images showing EDS qualitative chemical maps revealed some particular aspects worth emphasizing: 3.1 Crystal morphologies 1. Epitaxial crystal growth is a mechanism of precipitation of Only 3 experiments were described by Sánchez-Pastor et al. a Ba-rich phase over metatorbernite (Fig. 2), which is shown by a (2013) which had a successful outcome, while the rest had higher signal of Ba over the topographic highs as opposed to a crystallization times > 2 years or did not crystallize anything. It lower signal elsewhere. was these ones that we used in this study, and their major 2. Natural metatorbernite crystals showed chemical difference to the set of experiments of Sánchez-Pastor et al. heterogeneities where a square domain core of metautunite (Ca) (2013) was that the gel in the horizontal column was reactive is surrounded by metatorbernite (Fig. 3), indicating that the (containing a fixed constant concentration of 50 ppm of U) cationic substitution in uranyl-phosphates of the metautunite instead of being diffused along with the remaining cations (Cu group affects a wider range of cations and mineral species than and/or Ba). Both experiment groups with either Cu or Ba in previously expected, as it has also been recently confirmed in solution revealed the presence of metatorbernite or natural environments (Prazeres et al., submitted). metauranocircite, respectively, showing different morphologies 3. Cation substitutions of both Ca2+ and Cu2+ for Ba2+ in and crystal aggregates. However, experiments with Cu and Ba in natural samples (Fig. 4). This substitution occurs pervasively solution showed only metatorbernite crystals with no direct along structural discontinuities, essentially through cleavage indication of the presence of a Ba-phase (Fig. 1).This was only plans and other crystallographic directions with a clear detected in some crystals as mixed
Recommended publications
  • Remediation of Uranium-Contaminated Ground Water at Fry Canyon, Utah
    Science Highlight – November 2003 Remediation of Uranium-contaminated Ground Water at Fry Canyon, Utah Christopher C. Fuller1, John R. Bargar2, James A. Davis1 1U.S. Geological Survey, Water Resources Division, Menlo Park, CA 2Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, CA Clean up of contaminated aquifers is a difficult and expensive problem because of the inaccessibility of the subsurface and the volume of soil and ground water requiring treat- ment. Established technologies such as pump-and-treat and soil excavation are ineffective in most large contamination scenarios because they treat only a small fraction of the con- tamination or are prohibitively expensive (National Research Council, 1999). Perme- able Reactive Barriers (PRBs) are a relatively new technology that offer promise to overcome these obstacles. PRBs are trenches (figure 1) or fence-like arrays of non-pumping wells emplaced in the subsurface at depths of up to 150 feet to intercept the flow of contaminated ground water (Freethey et al., 2002). Fill materials contained within the PRBs react with dissolved contaminants to degrade or sequester them. Thus, in essence, PRBs act as large in-situ filters to clean ground water. PRB technologies offer lower oper- ating costs, are highly energy efficient, and require no surface facilities or ground water pumping/recharge (Freethey et al., 2002; Morrison and Spangler, 1992; Shoemaker et al., 1995). Two commonly proposed PRB contaminant-removal mechanisms are: (a) precipitation reac- tions in which metal contaminants are sequestered within freshly formed mineral phases, and (b) oxidative degradation of contaminants by particulate iron metal. In order for PRBs to be cost-effective they should be effective for an economically viable period (or be replenishable).
    [Show full text]
  • Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores
    JfipwK LEACHING TIME REAGENTS TEMPERATURE FLOCCULANT CLARITY AREA COUNTER CURRENT DECANTATION It 21 21 J^^LJt TECHNICAL REPORTS SERIES No.19 6 Significance of Mineralogy in the Development of Flowsheets for Processing Uranium Ores \W# INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1980 SIGNIFICANCE OF MINERALOGY IN THE DEVELOPMENT OF FLOWSHEETS FOR PROCESSING URANIUM ORES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957.
    [Show full text]
  • Lord Hill Quarry Town: Stoneham, Ox Ford County Base Map: Cen Ter Lovell 7.5’ Quadran Gle Con Tour in Ter Val: 20 Feet
    Lord Hill Quarry Town: Stoneham, Ox ford County Base map: Cen ter Lovell 7.5’ quadran gle Con tour in ter val: 20 feet Type of de posit: Gran ite peg matite. strunzite, to paz, torbernite/metatorbernite, triphylite(?), triplite, uraninite, uranophane, vivian it e, zircon (var. cyrtolite). Col lect ing sta tus: Locat ed in the White Mountai n Nati onal Forest . No perm ission is needed to collec t miner als here. How- Com ments: Lord Hill is one of the fa vor ite col lect ing sites in ever, collec ting must be non com mercia l, done with hand tools, Maine, offer ing a va riety of miner als and White Mountai n scen - and not greatly disturb the mine area. ery. The best-known finds from this local ity in clude large crys- tals of white topaz, and smoky quartz crystal s encrust ed by many Min er als ob served: albit e, almandine (garnet) , autun- small phenakite crys tals. Most col lect ing ac tiv ity ap pears to ite/meta-autun ite, beraunite, bermanite, beryllonite, bertrandite, have oc curred in the larger of the two quarry pits, al though a ma- beryl, bi o tite, bis muth, bis muthi nite, bismutite, cas sit er ite, jor pocket contai n ing smoky quartz and fluorapatite crystal s was columbite, cryptomelane, damourite, elbaite (tour maline) , opened in the floor of the smaller pit in 1991. The pieces of topaz eosphorite, fluorapatite, fluo rite, gahnite, goethite com monly found here are disti n guished by their bluish-whi te (pseudomorphic after pyrit e), goyazite, heterosite, hureaulite, color (es pe cially when wet), sin gle cleav age di rec tion, and hydroxylapatite, hydroxyl-herderite, microcline, microlite, higher den sity than sim i lar-look ing peg ma tite min er als.
    [Show full text]
  • Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
    IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • UNITED STATES DEPARTMENT of the INTERIOR GEOLOGICAL SURVEY PRELIMINARY DEPOSIT-TYPE MAP of NORTHWESTERN MEXICO by Kenneth R
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY PRELIMINARY DEPOSIT-TYPE MAP OF NORTHWESTERN MEXICO By Kenneth R. Leonard U.S. Geological Survey Open-File Report 89-158 This report is preliminary and has not been reviewed for conformity with Geological Survey editorial standards and stratigraphic nomenclature. Any use of trade, product, firm, or industry names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Menlo Park, CA 1989 Table of Contents Page Introduction..................................................................................................... i Explanation of Data Fields.......................................................................... i-vi Table 1 Size Categories for Deposits....................................................................... vii References.................................................................................................... viii-xx Site Descriptions........................................................................................... 1-330 Appendix I List of Deposits Sorted by Deposit Type.............................................. A-1 to A-22 Appendix n Site Name Index...................................................................................... B-1 to B-10 Plate 1 Distribution of Mineral Deposits in Northwestern Mexico Insets: Figure 1. Los Gavilanes Tungsten District Figure 2. El Antimonio District Figure 3. Magdalena District Figure 4. Cananea District Preliminary Deposit-Type Map of
    [Show full text]
  • Thermal Decomposition of Metatorbernite – a Controlled Rate Thermal Analysis Study
    Journal of Thermal Analysis and Calorimetry, Vol. 79 (2005) 721–725 THERMAL DECOMPOSITION OF METATORBERNITE – A CONTROLLED RATE THERMAL ANALYSIS STUDY R. L. Frost1*, J. Kristóf 2, M. L. Weier1, W. N. Martens1 and Erzsébet Horváth3 1Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia 2Department of Analytical Chemistry, University of Veszprém, 8201 Veszprém, P.O. Box 158, Hungary 3Department of Environmental Engineering and Chemical Technology, University of Veszprém, 8201 Veszprém, P.O. Box 158, Hungary The mineral metatorbernite, Cu[(UO2)2(PO4)]2·8H2O, has been studied using a combination of energy dispersive X-ray analysis, X-ray diffraction, dynamic and controlled rate thermal analysis techniques. X-ray diffraction shows that the starting material in the thermal decomposition is metatorbernite and the product of the thermal treatment is copper uranyl phosphate. Three steps are ob- served for the dehydration of metatorbernite. These occur at 138ºC with the loss of 1.5 moles of water, 155°C with the loss of 4.5 moles of water, 291°C with the loss of an additional 2 moles of water. These mass losses result in the formation of four phases namely meta(II)torbernite, meta(III)torbernite, meta(IV)torbernite and anhydrous hydrogen uranium copper pyrophosphate. The use of a combination of dynamic and controlled rate thermal analysis techniques enabled a definitive study of the thermal decompo- sition of metatorbernite. While the temperature ranges and the mass losses vary from author to author due to the different experi- mental conditions, the results of the CRTA analysis should be considered as standard data due to the quasi-equilibrium nature of the thermal decomposition process.
    [Show full text]
  • A Solid Solution Series Between Xenotime (Ytp04) and Chernovite (Ytaso0
    MINERALOGICAL MAGAZINE, JUNE I973, VOL. 39, 1'I'. I45--5I A solid solution series between xenotime (YtP04) and chernovite (YtAsO0 STEFAN GRAESER Department of Mineralogy, Natural History Museum, Basel, and Mineralogical Institute, University of Basel, Switzerland HANS SCHWANDER Mineralogical Institute, University of Basel HANS A. STALDER Natural History Museum, Bern, Switzerland "SUMMARY. The mineral chernovite, described as a new mineral from the Urals by Russian minera- logists in I967 (Goldin et aL, 1967), has been found at three different localities in mineral fissures in the Binnatal, Switzerland, and a little to the south, in Italy. The mineral occurs in greenish-yellow bipyramidal crystals up to about t mm. A detailed single-crystal study of several specimens showed that the lattice constants vary considerably on either side of those published for the original cherno- vite. The refractive indices, too, display some variation. Microprobe analyses of this material, and of xenotime specimens from the same region, revealed that there exists at least partial solution between chernovite and xenotime. The three chernovite samples have molar percentages of 63"z, 73'2, and 82.o % YtAsO4 (the Urals chernovite has about 95"2 %). These studies prove the existence of an fisomorphous series between xenotime and chernovite, at least in the As-rich portion. D U RI N G the summer of I966 the mineral collector Fritz Stettler of Berne found some mineral specimens in the southern part of Binnatal that were unknown to him; he sent them to the Natural History Museum in Berne for identification. One of us (H. A. St.) studied the minerals by Debye-Scherrer diagrams and optical methods.
    [Show full text]
  • AUTUNITE from MT. SPOKANE, WASHINGTON* G. W. Lno, U. S. Geologicalsurvey, Menlo Park, California
    THE AMERICAN MINERALOGIST, VOL. 45, JANUARY_FEBRUARY, 1960 AUTUNITE FROM MT. SPOKANE, WASHINGTON* G. W. Lno, U. S. GeologicalSurvey, Menlo Park, California ABSTRACT Near Mt. Spokane, Washington, coarsely crystalline autunite is developed in vugs, fractures, and shear zones in granitic rock. With the exception of dispersed submicroscopic uraninite particles, autunite is the only ore mineral in the deposits. A study of associated granitic rocks reveals that apatite, the most abundant accessory constituent, has been pref- erentially leached and corroded in mineralized zones, suggesting that it may have provided a source of lime and phosphate for the formation of autunite. Leaching may have been effected partly by meteoric water) but more probably was due to the action of ascending connate solutions that may also have carried uranium from unoxidized, as yet undiscovered deposits at depth. Autunite from the Daybreak mine has been studied optically, chemically, and by r-ray diffraction. The autunite is commonly zoned from light-yellow margins to dark-green or black cores, and autunite from the inner zone has a higher specific gravity and higher re- fractive indices than peripheral light material. X-ray powder difiraction patterns of dark and light meta-autunite formed from this autunite show no significant difierences in the d spacings; howevet, diffraction patterns of nine zoned samples each show uraninite to be present in the dark, and absent from the light, phase. UOz and UOs determinations range from 0.66-0.70 per cent and 57.9-58.0 pe( cent, respectively, for light autunite, whereas dark autunite shows a range (in seven determinations) of UOz from 1,2 to 4.0 per cent, and UOs from 55.1 to 58.8 per cent.
    [Show full text]
  • Geology of Barium, Strontium, and Fluorine Deposits in Canada
    ECONOMIC GEOLOGY REPORT 34 GEOLOGY OF BARIUM, STRONTIUM, AND FLUORINE DEPOSITS IN CANADA K.R. DAWSON 1985 © Minister of Supply and Services Canada 1985 Available in Canada through authorized bookstore agents and other bookstores or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada KlA OS9 and from Geological Survey of Canada offices: 60 l Booth Street Ottawa, Canada KlA OE8 3303-33rd Street N. W., Calgary, Alberta T2L 2A7 100 West Pender Street Vancouver, British Columbia V6B 1R8 (mainly B.C. and Yukon) A deposit copy of this publication is also available for reference in public libraries across Canada Cat. No. M43-34/1985E Canada: $13.00 ISBN 0-660-11902-1 Other countries: $15.60 Price subject to change without notice Critical Readers R.I. Thorpe K.M. Dawson G.F. Leech D.C . Findlay Original manuscript submitted: 1981 - 07 Approved for publication: 1983 - 04 Preface Preface Barium, strontium and fluorine have many industrial Le baryum, le strontium et le fluor connaissent de applications. All have been produced in Canada during this nombreuses utilisations industrielles. Le Canada en a produit century but at present our needs for strontium chemicals, tout au long du siecle m2is ii doit actuellement en importer, crude fluorite and fluorine chemicals are met by imports, principalement du Mexique et des Etats-Unis, pour subvenir a mainly from Mexico and the United States. ses besoins de derives chimiques de strontium et de fluorine , ainsi que de fluor brut. Barite is primarily employed in the heavy drilling muds La barytine est surtout utilisee par l'industrie used in the petroleum exploration industry.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Spodumene and Autunite from Alstead, New Hampshire G
    578 TEE AM ERICAN M I N ERALOGIST SPODUMENE AND AUTUNITE FROM ALSTEAD, NEW HAMPSHIRE G. R. MBcarHLrN, Cornel'|,Uniaersity. During an investigation in August and September, 7927, oI the pegmatites of the Gilsum area, Cheshire County, New Hamp- shire, two minerals, spodumene and autunite, were found which are not known to have been reported before from this district. It seemsworthwhile, therefore, to put this occurrence on record. The pegmatites of this region are intruded into a mica schist with which they have rather sharp contacts, although there is some lit-par-lit injection on a small scale as well as tourmalini- zation of the wall rock. The essentialminerals, aside from qtartz, are feldspar and muscovite, both of which are extensively quarried in the area. The accessory minerals include biotite, black tour- maline, beryl, garnet, apatite, spodumene,autunite, and zircon. The spodumene and autunite came from the quarry of the New Hampshire Mica and Mining Company in the town of Alstead, about one and four-fifths miles north northwest of Gilsum village. The spodumene crystals occur on an inaccessiblewall near the top of the west face of the quarry. They were much concealedby material washed down from the surface, but the crystals exposed appeared to be of the order of several feet in length. From blocks which had fallen from the wall a few crystals were obtained, the largest of which was six inches long, four inches wide, and one and one-half inches thick, but it did not represent the entire crystal. The spodumene occurs associated with tourmaline, garnet, apatite, feldspar, qtartz, and sericite.
    [Show full text]