Review of Maritime Transport 2018 65

Total Page:16

File Type:pdf, Size:1020Kb

Review of Maritime Transport 2018 65 4 In 2017, global port activity and cargo handling of containerized and bulk cargo expanded rapidly, following two years of weak performance. This expansion was in line with positive trends in the world economy and seaborne trade. Global container terminals boasted an increase in volume of about 6 per cent during the year, up from 2.1 per cent in 2016. World container port throughput stood at 752 million TEUs, reflecting an additional 42.3 million TEUs in 2017, an amount comparable to the port throughput of Shanghai, the world’s busiest port. While overall prospects for global port activity remain bright, preliminary figures point to decelerated growth in port volumes for 2018, as the growth impetus of 2017, marked by cyclical recovery and supply chain restocking factors, peters out. In addition, downside risks weighing on global shipping, such as trade policy risks, geopolitical factors and structural shifts in economies such as China, also portend a decline in port activity. Today’s port-operating landscape is characterized by heightened port competition, especially in the container market segment, where decisions by shipping alliances regarding capacity deployed, ports of call and network structure can determine the fate of a container port terminal. The framework is also being influenced by wide- PORTS ranging economic, policy and technological drivers of which digitalization is key. More than ever, ports and terminals around the world need to re-evaluate their role in global maritime logistics and prepare to embrace digitalization- driven innovations and technologies, which hold significant transformational potential. Strategic liner shipping alliances and vessel upsizing have made the relationship between container lines and ports more complex and triggered new dynamics, whereby shipping lines have stronger bargaining power and influence. The impact of liner market concentration and alliance deployment on the port–carrier relationship will need to be monitored and assessed. Areas of focus include the impact on the selection of ports of call, the configuration of liner shipping networks, the distribution of costs and benefits between container shipping and ports, and approaches to container terminal concessions, as shipping lines often have stakes in terminal operations. Enhancing port and terminal performance in all market segments is increasingly recognized as critical for port planning, investment and strategic positioning, as well as for meeting globally established sustainability benchmarks and objectives such as the Sustainable Development Goals. Ports and their stakeholders, including operators, users and Governments, should collaborate to identify and enable key levers for improving port productivity, profitability and operational efficiencies. PORTS IN 2017 World container port throughput: +6% Volumes: 752 million TEUs Asia Containerized vessels spend less time in ports. Average port times for all WORLD CONTAINER ships improved in 2017 PORT VOLUMES BY REGION 31.2 Europe hours Developing North America America Africa 33.6 hours in 2016 Oceania 2% 4% 6% 8% 16% 63% Digitalization will affect ports REVIEW OF MARITIME TRANSPORT 2018 65 estimated at over 15 billion tons in 2016, following A. OVERALL TRENDS IN GLOBAL PORTS an increase of 2.1 per cent over 2015 (Shanghai As key players in international trade and logistics International Shipping Institute, 2016). and critical nodes in global supply chains, seaports A study describing the performance of leading global continue to underpin globalized production processes, ports between 2011 and 2016 found that bulk- market access and effective integration in the global handling terminals captured most of the expansion economy. World seaports are principal infrastructural gains of all ports, including container- and bulk- assets that service shipping and trade, and their handling ports (Fairplay, 2017a). Almost all leading performance is largely determined by developments ports recorded a volume increase, except Shanghai, in the world economy and trade. Cargo-handling where the amount of cargo handled declined over activity and throughput in global ports, which reflected the review period. With 485 million tons handled a recovery in the global economy and a rebound in in 2016, Port Hedland, Australia saw rapid growth trade volumes that boosted shipping demand and during the same period, followed by the Chinese seaborne trade in 2017, showed overall improvement ports of Ningbo-Zhoushan, Caofeidian, Tangshan and promising trends. and Suzhou. The top 20 global ports included only three ports outside Asia: the ports of Hedland, Since over 80 per cent of world merchandise trade Rotterdam and South Louisiana. Compared with in volume terms is handled by ports worldwide and other ports on the list, cargo handled at the port nearly two thirds of this trade is loaded and unloaded of Rotterdam expanded at a slower rate between in the ports of developing countries, the strategic 2011 and 2016, owing to a relative decline in bulk importance of well-functioning and efficient ports for commodity volumes handled. Overall, and despite growth and development cannot be overemphasized. their predominance, port volumes in China are Global ports cater to ships and cargo across various said to be increasingly affected by the country’s stages of port-handling operations, starting with the gradual transition towards a more service- and shoreside, to the berth, the yard and the landside. consumption-oriented economy. In Singapore, port Therefore, enhancing port efficiency throughout the volumes between 2011 and 2016 increased, and various cargo- and vessel-handling phases is crucial the first liquefied natural gas bunkering terminal was for overall efficiency and to ensure that gains achieved opened in 2017. by one segment of the maritime logistics chain are not cancelled out by inefficiencies arising elsewhere Preliminary analysis suggests that port volumes in the process. increased in 2017 reflecting, to a large extent, global economic recovery and growth in seaborne trade Ports are at the intersection of many developments. (see chapter 1). Estimates indicate that volumes They benefited from a global recovery in 2017 that handled in the top 20 global ports increased by 5 per remains nevertheless fragile, owing to ongoing cent to 9.4 billion tons in 2017, compared with 8.9 downside risks. They also face challenges arising from billion tons in 2016 (Shanghai International Shipping the changing dynamics in the liner shipping market, Institute, 2017). the need to embrace technological advances brought about by digitalization, the requirement to comply with Table 4.1. provides a list of leading global ports, a heightened global sustainability agenda and the measured by total tons of all cargo handled. Among imperative of remaining competitive and responding the top 10 ports, 8 were in Asia, mainly from China. to the demands of the world economy and trade. Ningbo-Zhoushan ranked first, with total volumes handled surpassing the 1 billion ton mark for the first time. Aside from Tianjin, which saw an 8.4 per cent 1. Improvements in global port cargo drop in volumes, all ports on the list recorded volume throughput increases in 2017. Reduced volumes in Tianjin may A widely used indicator providing insights into reflect the delayed effect of the industrial accident that the functioning of ports and their ability to attract occurred in 2015 and involved two explosions in the business is volumes handled by ports. As cargo flows port’s storage and handling of hazardous materials are largely determined by changes in demand, port facilities. It may also reflect government restrictions volumes help take the pulse of the world economy on the use of tracks for the carriage of coal. With and inform about potential transport infrastructure regard to Shanghai, the continued rebalancing of the needs and investment requirements. As such, port Chinese economy towards domestic consumption cargo throughput, including all cargo types, can and services was a major factor in the port’s ranking. serve as a leading economic indicator. While data for Global port activity, which mirrored global economic global port throughput in 2017 was not available at recovery in 2017, improved across all regions, the time of writing, a look at data for 2016 indicates albeit with some variations. Existing data highlight the scale of overall port-handling activity. Cargo the positive performance of ports in Europe and throughput (all cargo types, including containerized the United States, with volumes handled increasing and bulk commodities) at world major ports was at an annual rate of 4.9 per cent and 7 per cent, 66 4. PORTS Table 4.1 Global top 20 ports by cargo throughput, 2016–2017 (Million tons and annual percentage change) Rank Port Cargo throughput Percentage change 2017 2016 2017 2017–2016 1 Ningbo-Zhoushan 918 1 007 9,7 2 Shanghai 700 706 0,8 3 Singapore 593 626 5,5 4 Suzhou 574 608 5,9 5 Guangzhou 522 566 8,5 6 Tangshan 516 565 9,6 7 Qingdao 501 508 1,4 8 Port Hedland 485 505 4,3 9 Tianjin 549 503 -8,4 10 Rotterdam 461 467 1,3 11 Dalian 429 451 5,2 12 Busan 362 401 10,5 13 Yingkou 347 363 4,4 14 Rizhao 351 360 2,7 15 South Louisiana 295 308 4,4 16 Gwangyang 283 292 3,1 17 Yantai 265 286 7,6 18 Hong Kong SAR 257 282 9,7 19 Zhanjiang 255 282 10,3 20 Huanghua 245 270 10,0 Total 8 907 9 354 5,0 Source: Shanghai International Shipping Institute, 2017. Note: Figures cover all cargo types. Abbreviation: SAR, Special Administrative Region. respectively. Reflecting Asia’s position as the main source performance measurement component (see box 4.1). of world shipping demand and the influence of China, This work culminated in the adoption of 26 indicators port volumes handled at Asian ports increased by 7.2 per across six areas: finance, human resources, gender, cent in 2017. Main ports in China handled 12.6 billion vessel operations, cargo operations and environment tons, an increase of 6.9 per cent over 2016.
Recommended publications
  • BERTH PRODUCTIVITY the Trends, Outlook and Market Forces Impacting Ship Turnaround Times
    JULY 2014 BERTH PRODUCTIVITY The Trends, Outlook and Market Forces Impacting Ship Turnaround Times JOC Port Productivity Brought to you by JOC, powered by PIERS JOC Group Inc. WHITEPAPER, JULY 2014 BERTH PRODUCTIVITY: The Trends, Outlook and Market Forces Impacting Ship Turnaround Times TABLE OF CONTENTS Introduction. 1 Berth Productivity . 3 The Trends, Outlook and Market Forces Impacting Ship Turnaround Times Asia’s Troubled Outlook . 9 Why a Steady Dose of Mega-ships Limits the Potential for Berth Productivity Gains Racing the Clock in Europe . .11 Big Projects Pave the Way for the World’s Biggest Ships Behind the Port Productivity Numbers . .14 About the JOC Port Productivity Rankings. 16 The Rankings. 17 Validation Methodology. 23 Rankings Methodology . .23 About the Report. .24 About JOC Group Inc. .24 TABLES Rankings the Ports . 17 Top Ports: Worldwide . 17 Top Ports: Americas. .18 Top Ports: Asia. .18 Top Ports: Europe, Middle East, Africa. 18 Rankings the Terminals. .19 Top Terminals: Worldwide. .19 Top Terminals: Americas . .19 Top Terminals: Asia . .20 Top Terminals: Europe, Middle East, Africa . .20 Port Productivity by Ship Size. 21 Top Ports Globally, VESSELS LESS THAN 8,000 TEUS . .21 Top Terminals Globally, 8,000-TEU VESSELS AND LARGER . .21 Top Terminals Globally, VESSELS LESS THAN 8,000 TEUS . 22 Top Ports Globally, VESSELS 8,000+ TEUS . 22 +1.800.952.3839 | www.joc.com | www.piers.com ii © Copyright JOC Group Inc. 2014 WHITEPAPER, JULY 2014 BERTH PRODUCTIVITY: The Trends, Outlook and Market Forces Impacting Ship Turnaround Times Introduction ENHANCING BERTH PRODUCTIVITY By Peter Tirschwell Executive Vice If there’s an issue in the container shipping world that’s hotter than port President/Chief productivity, I’m not aware of it.
    [Show full text]
  • Study of U.S. Inland Containerized Cargo Moving Through Canadian and Mexican Seaports
    Study of U.S. Inland Containerized Cargo Moving Through Canadian and Mexican Seaports July 2012 Committee for the Study of U.S. Inland Containerized Cargo Moving Through Canadian and Mexican Seaports Richard A. Lidinsky, Jr. - Chairman Lowry A. Crook - Former Chief of Staff Ronald Murphy - Managing Director Rebecca Fenneman - General Counsel Olubukola Akande-Elemoso - Office of the Chairman Lauren Engel - Office of the General Counsel Michael Gordon - Office of the Managing Director Jason Guthrie - Office of Consumer Affairs and Dispute Resolution Services Gary Kardian - Bureau of Trade Analysis Dr. Roy Pearson - Bureau of Trade Analysis Paul Schofield - Office of the General Counsel Matthew Drenan - Summer Law Clerk Jewel Jennings-Wright - Summer Law Clerk Foreword Thirty years ago, U.S. East Coast port officials watched in wonder as containerized cargo sitting on their piers was taken away by trucks to the Port of Montreal for export. At that time, I concluded in a law review article that this diversion of container cargo was legal under Federal Maritime Commission law and regulation, but would continue to be unresolved until a solution on this cross-border traffic was reached: “Contiguous nations that are engaged in international trade in the age of containerization can compete for cargo on equal footings and ensure that their national interests, laws, public policy and economic health keep pace with technological innovations.” [Emphasis Added] The mark of a successful port is competition. Sufficient berths, state-of-the-art cranes, efficient handling, adequate acreage, easy rail and road connections, and sophisticated logistical programs facilitating transportation to hinterland destinations are all tools in the daily cargo contest.
    [Show full text]
  • U.S. Port Congestion & Related International Supply Chain Issues
    U;S; Container Port Congestion & Related International Supply Chain Issues: Causes, Consequences & Challenges (!n overview of discussions at the FM port forums) Image Sources 1) http://ecuadoratyourservice;com/live-in-ecuador/relocation-and-shipping-services/attachment/container-ship/ 2) http://www;pressherald;com/wp-content/uploads/2012/12/Port+Strike_!cco11;jpg 3) http://truckphoto;net/peterbilt-model-587-tractor-trailertruck-picture-photo;jpg 4) https://www;airandsurface;com/blog/wp-content/uploads/2014/02/Port-of_Long_each;jpg 5) http://www;performancecards;com/wp-content/uploads/2012/12/Warehouse;jpg 6) http://jurnalmaritim;com/wp-content/uploads/2015/03/arge9-21-09-km;jpg 7) "Portainer (gantry crane)" by M;Minderhoud - Own work; Licensed under Y-S! 3;0 via Wikimedia ommons - http://commons;wikimedia;org/wiki/File:Portainer_(gantry_crane);jpg#/media/File:Portainer_(gantry_crane);jpg 8) Norfolk Southern U;S; Container Port Congestion & Related International Supply Chain Issues: Causes, Consequences & Challenges (!n overview of discussions at the FM port forums) July 2015 U.S. Container Port Congestion and Related International Supply Chain Issues: Causes, Consequences and Challenges (An overview of discussions at the FMC port forums) Table of Contents Introduction Global Trade and the U.S. Economy ................................................................................................ 1 Industry Condition and Trends......................................................................................................... 3
    [Show full text]
  • Container Port Capacity and Utilization Metrics
    Tioga Container Port Capacity and Utilization Metrics Dan Smith The Tioga Group, Inc. Diagnosing the Marine Transportation System – June 27, 2012 Research sponsored by USACE Institute for Water Resources & Cargo Handling Cooperative Program www.tiogagroup.com/215-557-2142 Key Questions and Answers Tioga Key questions • How do we measure port capacity? • How do we measure utilization and productivity? • What do the metrics mean for port development? Answers • Port capacity is a function of draft, berth length, CY acreage, CY density, and operating hours • Most U.S. ports are operating at well below their inherent capacity • Individual ports and terminals face specific capacity bottlenecks, especially draft 2 Available Data and Metrics Tioga What can we do with publicly available data? • Infrastructure and operating measures are accessible • Labor and financial measures are not Available Port Data Yield Available Port Metrics Always Land Use Channel & Berth Depth TEU/Gross Acre Gross/Net CY Acres Berth Length TEU Slots/CY Acre (Density) Net/Gross Ratio Berths TEU Slots/Gross Acre CY Utilization Cranes & Types TEU/Slot (Turns) Moves/Container Gross Acres TEU/CY Acre Avg. Dwell Time Port TEU Crane Use Avg. Vessel TEU Number of Cranes Avg./Max Moves per hour Vessel Calls TEU/Crane TEU/Available Crane Hour Sometimes Vessel Calls/Crane TEU/Working Crane Hour Avg. Crane Moves/hr Crane Utilization TEU/Man-Hour CY & Rail Acres Berth Use TEU Slots Number of Berths Max Vessel DWT and TEU Estimated Length of Berths TEU/Vessel TEU Max Vessel TEU Depth of Berth & Channel Vessel TEU/Max Vessel TEU Confidential TEU/Berth Berth Utilization - TEU Costs Vessels/Berth Berth Utilization - Vessels Man-hours Balance & Tradeoffs Vessel Turn Time Cranes/Berth Net Acres/Berth Rates Gross Acres/Berth Cost/TEU Avg.
    [Show full text]
  • The Waves of Containerization: Shifts in Global Maritime Transportation David Guerrero, Jean Paul Rodrigue
    The waves of containerization: shifts in global maritime transportation David Guerrero, Jean Paul Rodrigue To cite this version: David Guerrero, Jean Paul Rodrigue. The waves of containerization: shifts in global maritime trans- portation. International Association of Maritime Economists Conference, Jul 2013, France. 26 p. hal-00877538 HAL Id: hal-00877538 https://hal.archives-ouvertes.fr/hal-00877538 Submitted on 13 Nov 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Waves of Containerization: Shifts in Global Maritime Transportation David Guerrero SPLOTT-AME-IFSTTAR, Université Paris-Est, France. Jean-Paul Rodrigue Dept. of Global Studies & Geography, Hofstra University, Hempstead, New York, United States. Abstract This paper provides evidence of the cyclic behavior of containerization through an analysis of the phases of a Kondratieff wave (K-wave) of global container ports development. The container, like any technical innovation, has a functional (within transport chains) and geographical diffusion potential where a phase of maturity is eventually reached. Evidence from the global container port system suggests five main successive waves of containerization with a shift of the momentum from advanced economies to developing economies, but also within specific regions.
    [Show full text]
  • A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities
    logistics Review A Literature Review, Container Shipping Supply Chain: Planning Problems and Research Opportunities Dongping Song School of Management, University of Liverpool, Chatham Street, Liverpool L69 7ZH, UK; [email protected] Abstract: This paper provides an overview of the container shipping supply chain (CSSC) by taking a logistics perspective, covering all major value-adding segments in CSSC including freight logistics, container logistics, vessel logistics, port/terminal logistics, and inland transport logistics. The main planning problems and research opportunities in each logistics segment are reviewed and discussed to promote further research. Moreover, the two most important challenges in CSSC, digitalization and decarbonization, are explained and discussed in detail. We raise awareness of the extreme fragmentation of CSSC that causes inefficient operations. A pathway to digitalize container shipping is proposed that requires the applications of digital technologies in various business processes across five logistics segments, and change in behaviors and relationships of stakeholders in the supply chain. We recognize that shipping decarbonization is likely to take diverse pathways with different fuel/energy systems for ships and ports. This gives rise to more research and application opportunities in the highly uncertain and complex CSSC environment. Citation: Song, D. A Literature Keywords: container shipping supply chain; transport logistics; literature review; digitalization; Review, Container Shipping Supply
    [Show full text]
  • Distributed Agent Architecture for Port Automation
    Distributed Agent Architecture for Port Automation Tom Thurston Huosheng Hu Department of Computer Science Department of Computer Science University of Essex, Colchester CO4 3SQ, U.K. University of Essex, Colchester CO4 3SQ, U.K. Email: [email protected] Email: [email protected] Abstract several levels (depth) and thus sophisticated computer software has been developed to ensure that the containers In the near future, container ports will no longer be are positioned such that they can be removed in a pre- able to expand into the surrounding land and will thus be calculated order so that space can be made for oncoming 1 unable to meet the storage requirements due to the boom cargo with relative ease. For each column, the QC must in world trade. A solution to this problem is to increase the first unload all the containers destined for this port, and container throughput of the port by reducing the amount then load all the containers scheduled for leaving this port. of time necessary to load and unload a ship. This paper Clearly there is a strict loading schedule which must be 2 presents distributed agent architecture to achieve this task. observed. Under such architecture, an intelligent planning algorithm This paper is concerned specifically with the loading is continuously optimised by the dynamic and co-operative process, however the standard unloading process is rescheduling of yard resources such as quay cranes and similar, just in reverse. In most ports around the world, the container vehicles. loading of each container requires 3 separate processes. i) Retrieval of Container from Stacking Lane -- An 1.
    [Show full text]
  • Key Performance Indicator Development for Ship-To-Shore Crane Performance Assessment in Container Terminal Operations
    Journal of Marine Science and Engineering Article Key Performance Indicator Development for Ship-to-Shore Crane Performance Assessment in Container Terminal Operations Jung-Hyun Jo 1 and Sihyun Kim 2,* 1 Department of Maintence and Repair, Hutchison Port Busan, Busan 48750, Korea; [email protected] 2 Department of Logistics, Korea Maritime and Ocean University, Busan 49112, Korea * Correspondence: [email protected] Received: 18 November 2019; Accepted: 17 December 2019; Published: 19 December 2019 Abstract: Since the introduction of containerization in 1956, its growth has led to a corresponding growth in the role of container seaborne traffic in world trade. To respond to such growth, requirements for setting up the common standards in various kinds of container harbor equipment, and identifying performance indicators to assess container handling equipment performance have increased. Although the operating systems in ship-to-shore cranes may be different at each container terminal, the four main movements are the same: hoist, trolley, gantry, and boom. By determining in this work the hour metrics for each movement, it was possible to define the key performance indicators to be adopted and assess ship-to-shore crane performance. The research results identified that the mean time between failures is decreasing because of the accumulation of long-lasting heavyweight operations, while the number of maintenance of machine parts incidents and man-hours is steadily increasing. The key performance indicators offer a management tool to guide future ship-to-shore container crane inspection and the results provide useful insights for future container crane equipment operation improvements. Keywords: container terminal; ship-to-shore crane; performance assessment; key performance indicator; mean move between failure; mean time to repair; man-hour 1.
    [Show full text]
  • Shipping Containers As Building Components
    ‘SHIPPING CONTAINERS AS BUILDING COMPONENTS’ By J. D. Smith V19.0 updated 30-04-06 University of Brighton Department of the Built Environment Supervisor: Noel Painting J.D. Smith © This work is licensed under the Creative Commons Attribution-Non- Commercial 2.0 England & Wales License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/2.0/uk/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. J. Smith 2005-6 Shipping containers as accommodation II ABSTRACT This dissertation provides an assessment of the feasibility of using ISO shipping containers as building components. ISO shipping containers are widely available and as various pioneers have shown, can be a low cost building resource. The reasons why these units are not widely used in the UK is not clear. This document sets out to provide a view of the viability of this medium, together with an identification of problems that have occurred or may occur in implementing their use. It is the aim of this paper to show how shipping containers have been used, the methods employed, the locations in which they have been used and their purpose, this encompasses both the UK and also considers influences from the global market. The current housing needs of the UK is considered and the possibilities of satisfying this need using ISO shipping containers is assessed by means of a survey of existing container structures. This is followed by an analysis of the current UK Building Regulations (April 06) to identify the technical hurdles involved in container conversion.
    [Show full text]
  • Reducing Train Turn Times with Double Cycling in New Terminal Designs
    Reducing Train Turn Times with Double Cycling in New Terminal Designs Anne Goodchild, J. G. McCall, John Zumerchik, and Jack Lanigan, Sr. North American rail terminals need productivity improvements to and manage multiple truck scenarios (e.g., empty chassis drop off, handle increasing rail volumes and improve terminal performance. container drop off and pick up, leaving empty after drop off, leaving This paper examines the benefits of double cycling in wide-span gantry bobtail after drop off, and chassis flips—the transfer of a container terminals that use automated transfer management systems. The authors from a bad chassis). Third, wheeled operations require a fleet of yard demonstrate that the use of double cycling rather than the currently tractors to shuttle chassis, with and without containers, to and from practiced single cycling in these terminals can reduce the number of the ramp and remote storage area. Fourth, labor productivity suffers cycles required to turn a train by almost 50% in most cases and reduce from the considerable amount of time drayage and yard tractor drivers train turn time by almost 40%. This change can provide significant spend connecting and disconnecting the chassis (also increasing productivity improvements in rail terminals, increasing both efficiency equipment wear and tear). Fifth, the operation of the cranes and yard and competitiveness. tractors must be synchronized, which is made more difficult by early- and late-arriving trains. Sixth, chassis fleets entail enormous repair costs and phantom damage claims problems. And last, high container As the North American economy and international trade volumes volumes require significant real estate, especially with greater free significantly expanded in the 1980s, the introduction of double-stack container dwell time allowances.
    [Show full text]
  • Port-Rail Integration: Between Port Facilities and the Rail Network to Ensure Port Competitiveness
    www.cepal.org/transporte Issue No. 310 - Number 7 / 2012 BULLETIN FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN This issue of FAL Bulletin analyses the role of good modal integration Port-rail integration: between port facilities and the rail network to ensure port competitiveness. challenges and It is one of the activities carried out by the ECLAC Infrastructure Services Unit under a project on sustainable opportunities transport in Ibero-America, funded by Puertos del Estado de España. for Latin America The authors are Erick Leal Matamala, Introduction Professor at the Faculty of Economics and Administrative Sciences of Chile’s At a time when connectivity to the hinterland is becoming ever more Universidad Católica de la Santísima important, many Latin American ports are upgrading their rail connections Concepción, and Gabriel Pérez Salas, to turn them into a competitive differentiator. This issue reviews the cases of Associate Economic Affairs Officer, North America, Asia-Pacific and Europe, identifying the main issues that have ECLAC Infrastructure Services Unit. For driven port-rail integration as a source of port competitiveness. It goes on to further information please contact: examine the case of Latin America in order to pinpoint the main challenges [email protected] facing its industry and the potential benefits of greater modal integration for the competitiveness of ports and the entire regional economy. Introduction Port-rail connectivity is a strategic element of port development, both in economic and competitive terms and to reduce negative externalities on people and the environment. Not only does proper rail connectivity expand I.
    [Show full text]
  • Study on the Carbon Emission Evaluation in a Container Port Based on Energy Consumption Data
    九州大学学術情報リポジトリ Kyushu University Institutional Repository Study on the Carbon Emission Evaluation in a Container Port Based on Energy Consumption Data Huzaifi, Hanzalah, Muhammad Department of Mechanical Engineering, University of Indonesia Budiyanto, Arif, Muhammad Department of Mechanical Engineering, University of Indonesia Sirait, Juanda, Simon Department of Mechanical Engineering, University of Indonesia https://doi.org/10.5109/2740964 出版情報:Evergreen. 7 (1), pp.97-103, 2020-03. Transdisciplinary Research and Education Center for Green Technologies, Kyushu University バージョン: 権利関係: EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 07, Issue 01, pp97-103, March, 2020 Study on the Carbon Emission Evaluation in a Container Port Based on Energy Consumption Data Muhammad Hanzalah Huzaifi1, Muhammad Arif Budiyanto1*, and Simon Juanda Sirait1 1Department of Mechanical Engineering, University of Indonesia * Corresponding Author E-mail: [email protected] (Received November 1, 2019; Revised December 16, 2019; accepted February 24, 2020). Abstract: Increase as much as 87oC every year. Nowadays, 90% of the transportation for industry is done by sea. There are two components sharing the most vital role in sea transportation, i.e. ships and ports. This research focused on the calculation of the emissions in the whole process in the ports, which covered berthing, the unloading processes, transfer from piers to stacking spots, stacking and vice-versa. The method of this research involved collecting the data of the ports' performances for one year, which covered berthing, equipment and utility, fuel consumption, and electricity. The researched port was Belawan International Container Terminal (BICT), Medan, Indonesia. The emission factor used for fuel was based on the policy issued by the Ministry of Environment that has ratified IPCC 2006, and, as for the electricity, the emission factor of the Java Madura Bali power plant was used, i.e.
    [Show full text]