Vector Catalog ECU Software EN

Total Page:16

File Type:pdf, Size:1020Kb

Vector Catalog ECU Software EN Vector Katalog ECU Software EN 09.02.2011 13:40 Uhr Seite 1 Product Catalog ECU Software ENGLISH Vector Katalog ECU Software EN 09.02.2011 13:40 Uhr Seite a Date: March 2011 · Responsible for the contents: Vector Informatik GmbH, Stuttgart, Germany All mentioned product names are either registered or unregistered trademarks of their respective owners. The constant worldwide availability of all products or services is not warranted. No information contained in this catalog may be reproduced without expressed permission, in writing, from Vector Informatik GmbH. Errors and omissions excepted. Illustration & Design: SATZTEAM Fotosatz & Neue Medien GmbH, Eberdingen, Germany Vector Katalog ECU Software EN 09.02.2011 13:40 Uhr Seite b Vector Katalog ECU Software EN 09.02.2011 13:40 Uhr Seite 1/a Vector – the Company 1/0 Vector provides OEMs and suppliers of automotive and related industries a professional and open development platform of tools, software components and services for creating embedded systems. Customers worldwide place their trust in the solutions and products of the independent and self-contained Vector Group. Reliable Partner with Quality For many years, our customers have realized what they have in Vector: a reliable and competent partner for efficient solutions in electronic networking. This reliability is based upon the factors below: > Global unique processes and standards > All Vector subsidiaries are certified according to ISO 9001:2000 > SPICE level 3 (HIS scope) reached in the area of ECU software > CMMI maturity level 2 reached in the area of software services Milestones / Key Data 1988 Founding of Vector Informatik GmbH High Customer Satisfaction 1992 Sale of the first CANalyzer license The delivery quality and delivery time as well as consulting compe- 1994 Vector has more than 25 employees tence from Sales, Support, and Consulting are not just maintained 1996 Sale of the first CANoe and CANape license on a high level, but are constantly being improved. 1997 Founding of Vector CANtech, Detroit/USA The success: our customers judge us on a scale of 1 to 5 (where 1 is 1998 Founding of Vector Japan, Tokyo/Japan, the best grade and 5 the worst) with an average grade of 1.6. Vector Informatik is DIN EN ISO 9001:1994 certified 1999 Vector has more than 100 employees worldwide Excellent Working Atmosphere 2001 Move to the new company building in Stuttgart, 70 % of our highly-qualified employees work in the development Founding of Vector Consulting environment. Teamwork in modern structures ensures a working 2002 Vector Informatik is DIN EN ISO 9001:2000 certified, atmosphere that in the past few years has been judged “very good” Founding of Vector France, Paris/France, Founding of VecScan, Göteborg/Sweden, according to internal surveys. Trainees, interns, and graduating Vector has more than 250 employees worldwide students also profit from the many opportunities to work actively 2003 Vector has more than 400 employees worldwide with the newest technologies. Employee turnover at Vector, which 2004 Move to the second company building in Stuttgart, has been extremely low for many years, confirms how each person Founding of customer care center north in Braunschweig at Vector understands his or her work: as mental work with a “fun” and customer care center south in Munich/Germany factor. 2005 Vector has more than 500 employees worldwide 2006 Founding of office in Regensburg/Germany On Location Worldwide Vector has more than 600 employees worldwide For Vector, partnership with its customers means understanding their 2007 Vector has more than 700 employees worldwide requirements. In order to be responsive to our partners quickly and to Start of construction for the third company building be able to act purposefully, we are present worldwide. For optimal in Stuttgart/Germany support on location, the Vector Group has established, in addition to Founding of Vector Korea, Seoul/Rep. of Korea its own locations, a globe-spanning network of distributors. 2008 Vector has more than 800 employees worldwide Move to the third company building in Stuttgart 2009 Founding of Vector Great Britain, Birmingham Founding of Vector Informatik India, Pune Opening of Representative Office Shanghai, China 2010 aquintos becomes part of the Vector Group Vector Katalog ECU Software EN 09.02.2011 13:40 Uhr Seite 1/1 VECTOR –XXXXXXXXXXXX THE COMPANY 1/1 1/1 This catalog provides you an overview of Vector products and Services of the application area ECU Software: ECU Software Embedded software like real time operating systems (RTOS) ECUs. Basic software for AUTOSAR. Development services for soft- and communication modules for e.g. CAN, LIN, FlexRay and Ether- ware components. net. Software for memory management and for reprogramming of Please request other catalogs in the application areas Development of Distributed Systems, ECU Testing, ECU Calibration, Process Management, Vehicle Diagnostics, or request further information about the Vector Solutions for various tasks in automotive networking: Internet: www.vector.com/catalog/ • E-mail: [email protected] Development of Distributed Systems Process Management Tools and Services to design and develop a network of ECUs. Tools and Services to support the process management Tools to simulate, analyze and test the communication of the net- required to develop complex vehicle electronics. This includes work. qualification of human resources, coaching, and supplying special tools that allow the management of complex data, workflows and ECU Testing projects. Tools and services that allow the test of ECUs in all develop- ment phases, check the functionality of prototypes or execute Vehicle Diagnostics regression and conformity tests. Tools to describe, implement and test the diagnostic func- tionalities that are required to run diagnostic services on an ECU. ECU Calibration Diagnostic functionalities are set up during the ECU development, Tools to access the ECU at run-time. This allows acquiring stored in a consistent database and used during the ECU‘s and modifying measurement data and parameters, so the ECU lifecycle. algorithms can be modified and optimized. Vector Katalog ECU Software EN 09.02.2011 13:40 Uhr Seite 1/2 Bus Systems, Embedded Network Protocols, Standards and appropriate Vector Products 1/2 Bus System Description Application Area Appropriate Vector Product Page CAN CAN (Controller Area Network) was developed by the Automotive engineer- All Vector Products Robert Bosch GmbH in the early eighties and was interna- ing, automation tionally standardized (ISO 11898) in 1994. CAN was specif- engineering ically developed for the serial data exchange between electronic control units in automobiles but is also used for the realization of industrial microcontroller networks. LIN LIN (Local Interconnect Network) has been developed Automotive engineer- CANalyzer.LIN/CANoe.LIN ● especially for the cost-efficient communication of ing (body electronics CANalyzer/CANoe Option SCOPE ● intelligent sensors and actuators in automobiles. bus e.g. networking CANape ● LIN bus system characteristics: within a seat) CANbedded LIN Communication 3/8 > master/slave architecture Embedded Gateway 3/12 > time-controlled data transmission Flash Bootloader 5/2 > single-wire data transmission max. CANister ● 20 kBaud CANlog 3/4 ● > synchronization mechanism integrated in the GL1000, GL3000/4000/4200 ● protocol (no expensive quartz needed) MICROSAR LIN 2/18 Multilog ● Network Designer LIN ● VN8900 ● XL-Interface-Family ● MOST MOST (Media Oriented Systems Transport) has been devel- Automotive engineer- CANalyzer.MOST ● oped especially for the transmission of multimedia data in ing (multimedia CANoe.MOST ● automobiles. applications; net- Flash Bootloader 5/2 MOST bus system characteristics: working of infotain- MICROSAR MOST 2/22 > optical data transmission up to 25 Mbit/s ment devices e.g. Multilog ● > ring structure of the bus system tuner, DVD changer, VN2610 – USB-Interface for MOST ● > usage of the standardized XML Function Catalog etc.) > plug&play capability FlexRay FlexRay has been designed as a bus system for all security- Automotive engineer- CANalyzer.FlexRay ● relevant applications as well as for transmission of large ing (e.g. security- CANape ● amount of data in automobiles. relevant applications, CANoe.FlexRay ● FlexRay bus system characteristics: brake-by-wire, high- Flash Bootloader 5/2 > data transmission up to 10 Mbit/s speed backbone for FlexCard Cyclone II SE/E-Ray ● > redundant implementation of all networks other bus systems) FRstress ● > deterministic transmission behavior MICROSAR FR 2/16 As an exchange format for tools for the configuration of Multilog ● bus communication (design, parameterization) with Network Designer FlexRay ● FlexRay, the XML based FIBEX format (Field bus Exchange) VN3300, VN3600 and VN7600 is predominantly used. FlexRay-Interfaces ● Protocol resp. Description Application Area Appropriate Vector Product Page Exchange Format AUTOSAR The goal of the development partnership, founded by Automotive ECUs, AUTOSAR Evaluation Bundle 2/2 leading automotive OEMs and suppliers, is the definition of basic software AUTOSAR Services 2/54 an open reference architecture for ECU-specific software. AUTOSAR Basic Software Modules 2/6 AUTOSAR Tools 2/44 MICROSAR DIAG 2/28 ARINC 8xx ARINC 810 and 812 specify communication between Avionics and space CANalyzer.CANaero ● CANaerospace modules in the on-board galley (Galley Master, Galley technology CANoe.CANaero ● Inserts). The focus here is on power
Recommended publications
  • Vector Informatik Gmbh
    THE HANSEN REPORT ON AUTOMOTIVE ELECTRONICS. A Business and Technology Newsletter VOL. 18, NO. 6◆◆ PORTSMOUTH, NH USA JULY/AUGUST 2005 Software Process BMW Leads in Chassis Control Standards Gaining FlexRay Network Is Key Enabler from steering angle, acceleration and ride height sensors. Influence FlexRay is not just for steer- or brake- “This is a pilot project for us to learn by-wire anymore. BMW is about to bring what it means to bring FlexRay into a se- As software becomes more and more to market some groundbreaking new chas- ries car,” noted Karl-Heinz Gaubatz, gen- essential to the delivery of vehicle fea- sis control features implemented on a eral manager of electronics driving tures, carmakers and suppliers, particularly FlexRay network—a world’s first. This dynamics and lateral dynamics for BMW. in the West, are taking steps to ensure unexpected deployment of FlexRay comes BMW will build 15,000 cars per year with that their software development processes well before by-wire brakes or steering will this FlexRay application so the carmaker yield high-quality, reliable products. Two be ready for production vehicles. and its suppliers can gain experience with approaches have emerged: CMMI (Capa- By-wire systems operate without me- the network hardware and software before bility Maturity Model Integration) and chanical or hydraulic linkages so they it goes into high volume production. ISO/IEC (International Standards Orga- need safety-critical components such as “In the future, all new cars from BMW nization/International Electro-technical FlexRay to ensure reliability. FlexRay is a that come into production after 2006 will Commission) 15504, a.k.a.
    [Show full text]
  • Cyber Security Mechanisms for Connected Vehicles
    Infineon Security Partner Network Partner Use Case Cyber Security Mechanisms for Connected Vehicles Protecting automotive vehicle networks and business models from cyber security attacks Products AURIX™ www.infineon.com/ispn Partner Use Case Use case Application context and security requirement The rapidly growing connectivity of vehicles is opening numerous opportunities for new features and attractive business models. At the same time, the potential for cyber-attacks on vehicle networks is also growing. Such attacks threaten the functional safety of the vehicle and could cause financial damage. Challenge Vehicles consist of numerous interconnected electronic control units (ECUs) with numerous internal and external interfaces. The overall system only works if the software executed on the ECUs and the data transmitted between ECUs is protected against manipulation. Implementation The solution requires multiple layers of security mechanisms. The foundation is provided by microcontrollers which are equipped with security cores e.g. Aurix Hardware Security Module (HSM). They provide hardware acceleration for cryptographic primitives such as Advanced Encryption Standard (AES) and Elliptic Curve Cryptography (ECC) as well as protected storage of cryptographic keys. Based on these capabilities Vector is providing software and drivers for these HSMs that enable higher level security mechanisms such as secured boot, secured communication or secured diagnostic access. User benefits: Vehicle Electrical/Electronic (EE) architectures which integrate
    [Show full text]
  • Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
    Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al.
    [Show full text]
  • Architecture for a Remote Diagnosis System Used in Heavy-Duty Vehicles
    Institutionen för datavetenskap Department of Computer and Information Science Final thesis Architecture for a remote diagnosis system used in heavy-duty vehicles by Anders Björkman LIU-IDA/LITH-EX-A--08/034--SE 2008-06-30 Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Linköping University Department of Computer and Information Science Final Thesis Architecture for a remote diagnosis system used in heavy-duty vehicles by Anders Björkman LIU-IDA/LITH-EX-A--08/034--SE 2008-06-30 Supervisor: Jan Lindman Scania Fleet Management Department at Scania CV AB Examiner: Petru Eles Dept. of Computer and Information Science at Linköpings universitet Abstract The diagnosis system of a Scania vehicle is an indispensable tool for workshop personnel and engineers in their work. Today Scania has a system for fetching diagnostic information from field test vehicles remotely and store them in a database, so called remote diagnosis. This saves the engineers much time by not having to visit every vehicle. The system uses a Windows based on- board PC in the vehicle called an Interactor. The Interactor has a telematic unit for communication with Scanias Fleet Management System and the CAN-bus in the vehicle. In the next generation of the Interactor, its telematic unit is to be replaced by a Linux based telematic unit called the Communicator 200 (C200). The purpose of this master project is to create a new architecture for a remote diagnosis system that uses the new telematic unit Communicator 200. The thesis gives an analysis of the current remote diagnosis system used at Scania and proposes an architecture for a new generation remote diagnosis system using the C200.
    [Show full text]
  • Grafikbasierte Analyse Und Bewertung Heterogener Automobiler Netzwerke
    Masterthesis Jonathan Wendeborn Entwurf und Vergleich zweier Verfahren zur Analyse und Bewertung heterogener automobiler Netzwerke Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informations- und Department of Information and Elektrotechnik Electrical Engineering Jonathan Wendeborn Entwurf und Vergleich zweier Verfahren zur Analyse und Bewertung heterogener automobiler Netzwerke Masterthesis eingereicht im Rahmen der Masterprüfung im Masterstudiengang Informations- und Kommunikationstechnik am Department Informations- und Elektrotechnik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg in Zusammenarbeit mit: Vector Informatik GmbH Borsteler Bogen 27d 22453 Hamburg Betreuender Prüfer: Prof. Dr.-Ing. Aining Li Zweitgutachter: Prof. Dr. Franz Korf Industrieller Betreuer: Dipl.-Ing. Jörn Haase Abgegeben am 25. August 2016 Jonathan Wendeborn Thema der Masterthesis Entwurf und Vergleich zweier Verfahren zur Analyse und Bewertung heterogener automobiler Netzwerke Stichworte System-Level-Simulation, Analyse, Bewertung, heterogene Netzwerke, Echtzeit-Ethernet, Time-Triggered-Ethernet, AVB, TSN, CAN, Gateway, OMNeT++, CANoe, Elektrik-/Elektronik-Architektur, Metrik, Latenz, Jitter, Datenübertragungsrate, Paketverlustrate, Puffer, Binlog, BLF, COM, .NET, CAPL Kurzzusammenfassung Durch die Einführung von Echtzeitfähigkeit bei Ethernet können neuartige Netzwerke entwickelt werden, welche neue Funktionen ermöglichen und Kosten sparen. Um die Tauglichkeit eines Netzwerks
    [Show full text]
  • HCS12 V1.5 Core User Guide Version
    not are currently here Freescale Semiconductor, I..nc. Family indicated Product negligent regardingthedesign ormanufactureofthepart. personal injury or deathagainst associated all claims, with costs, such damages,application, and unintended Buyer expenses, shall or and indemnify reasonable and unauthorized hold attorney use,personal Motorola fees and injury arising even its or out officers, if of, death employees, subsidiaries, such directly maysupport affiliates, or occur. claim and or indirectly, distributors Should alleges any sustain harmless Buyer claim that life, purchase of or Motorola or or authorized use was for for Motorola any products use otherneither for as does application any components it in such convey in unintended which any systemsdesign. or license the intended unauthorized Motorola under failure for does its of patent surgical not the rightsMotorola implant assume nor Motorola reserves into any the product the liability the rights could of body, arising right create others. or out to Motorola a other of products make situation the applications are where changes not application intended designed, without or to intended, use further of notice any to product any or products circuit described herein herein; to improve reliability, function or numbers part DragonBall and Family, lines Product product i.MX Freescale Semiconductor,Inc. Original ReleaseDate:12May2000 For More Information OnThis Product, HCS12 V1.5 Core 2010: BGA-packaged Revised: 17August2000 Go to:www.freescale.com Version 1.2 User Guide September to Motorola, Inc Commission, prior Trade States United the International in sale States or United import the for DOCUMENT NUMBER from order Freescale S12CPU15UG/D an from of Because available 1 not are currently here Freescale Semiconductor, I..nc.
    [Show full text]
  • So Many Educational Microcontroller Platforms, So Little Time!
    AC 2012-4006: SO MANY EDUCATIONAL MICROCONTROLLER PLAT- FORMS, SO LITTLE TIME! Dr. Antonio Francisco Mondragon, Rochester Institute of Technology Antonio F. Mondragon-Torres received a B.Sc. degree with honors from Universidad Iberoamericana, Mexico City, Mexico, a M.Sc. degree from Universidad Nacional Autonoma de Mexico, Mexico City, Mexico, and a Ph.D. degree (as a Fullbright-CONACYT scholarship recipient) from Texas A&M Univer- sity, College Station; all degrees in electrical engineering in 1990, 1996, and 2002, respectively. From 1988 to 1995, he worked in a telecommunications company TVSCOM, Mexico City, Mexico, design- ing teletext products, first as a Design Engineer and later as a Design Manager. In 1995, he joined the Mechanical and Electrical Department, Universidad Iberoamericana, as an Associate Professor. From 2002 through 2008, he was with the DSPS R&D Center’s Mobile Wireless Communications Technology branch, Texas Instruments Dallas, Texas, and in 2008, he moved to the nanoMeter Analog Integration Wireless branch where he worked as Analog IP verification technical lead. In 2009, he worked for Intel Guadalajara, Design Center in Mexico as Front-End/Back-End technical lead. In 2009, he joined the Electrical, Computer and Telecommunications Engineering Technology Department at the Rochester In- stitute of technology where he currently is a tenure-track Assistant Professor. His research interests are analog and digital integrated circuit implementation of communications systems, and system-on-a-chip methodologies. Dr. Adriana Becker-Gomez, Rochester Institute of Technology Page 25.1165.1 Page c American Society for Engineering Education, 2012 So Many Educational Microcontroller Platforms, so Little Time! 1 Introduction Since embedded systems are ubiquitous, we should expose engineering technology students at an early stage in their program with tools that will lead them to ideation, innovation, energy awareness, and problem solving skills, which will enable them to become part of a very competitive workforce in the future.
    [Show full text]
  • Proof Your Canopen Products – Conformance and Interoperability
    December 2012 B 25361 CAN Newsletter Hardware + Software + Tools + Engineering Proof your CANopen products – conformance and interoperability Testing Easy access to CAN network analysis Isobus testing with implement and remaining bus simulation www.can-newsletter.org Solutions for open networks from one source Open CAN-based protocols are the basis of networking in com- mercial vehicles, avionics and industrial control technology. Vector supports you in all development phases of these systems: > Systematic network design with CANoe, ProCANopen and CANeds > Successful implementation with source code for CANopen, J1939 and more > Efficient configuration, test and extensive analysis with ProCANopen, CANoe and CANalyzer Multifaceted trainings and individual consulting complete our extensive offerings. Thanks to the close interlocking of the Vector tools and the competent support, you will increase the efficiency of your entire development process from design to testing. Further information, application notes and demos: www.vector.com/opennetworks AFDX® is an Airbus‘ registered trademark Vector Informatik GmbH Proof your CANopen products – conformance and interoperability Holger Zeltwanger Author Holger Zeltwanger CAN in Automation e. V. Managing Director [email protected] Definitions Compatibility: Capability to exist or perform in harmonious, agreeable, or congenial combination with others. Conformance: Compliance in actions, behavior, etc., with certain accepted stan- dards or specifications. Compliancy: A disposition or tendency to yield to the will of Figure 1: Current CANopen Conformance Test (CCT) tool others. he bell rings. The ap- CAN bit-rates of the tool and nor corrections of the EDS, Ilnteroperability: Tprentice opens the door the devices to 250 kbit/s, he links it to the test tool The ability of systems or of the CiA office.
    [Show full text]
  • Hardware + Software + Tools + Engineering Retrofitting Port Cranes Set to Boom CAN in Aquaplaning Warning
    June 2018 CAN Newsletter Hardware + Software + Tools + Engineering Retrofitting port cranes set to boom CAN in aquaplaning warning system Applications Online diameter control during wire and cable production www.can-newsletter.org New CAN FD Interfaces PCAN-M.2 PCAN-PCI/104-Express FD CAN FD Interface for M.2 (PCIe) CAN FD Interface for PCI/104-Express CAN interface for the M.2 slot (uses PCIe lane) 0#) %XPRESSCARD LANEX 1, 2, or 4 High-speed CAN channels (ISO 11898-2) Form factor PC/104 Form factor M.2 type: 2280/2260-B-M; Height: Single and Up to four cards can be used in one system Dual Channel 4.6 mm; Four Channel 10.2 mm 1, 2, or 4 High-speed CAN channels (ISO 11898-2) #OMPLIESWITH#!.SPECIÚCATIONS!"AND&$ #OMPLIESWITH#!.SPECIÚCATIONS!"AND&$ CAN FD support for ISO and Non-ISO standards switchable CAN FD support for ISO and Non-ISO standards switchable #!.&$BITRATESFORTHEDATAÚELDBYTESMAX FROM #!.&$BITRATESFORTHEDATAÚELDBYTESMAX FROM 20 kbit/s up to 12 Mbit/s 20 kbit/s up to 12 Mbit/s CAN bit rates from 20 kbit/s up to 1 Mbit/s CAN bit rates from 20 kbit/s up to 1 Mbit/s CAN bus connection via connection cable and D-Sub, Connection to CAN bus through D-Sub slot bracket, 9-pin (in accordance with CiA® 303-1) 9-pin (in accordance with CiA® 303-1) MCP2558FD CAN transceiver MCP2558FD CAN transceiver Galvanic isolation on the CAN connection up to 300 V, Galvanic isolation on the CAN connection up to 500 V, separate for each CAN channel separate for each CAN channel CAN termination can be activated through a solder jumper, CAN termination
    [Show full text]
  • Industrial Embedded Systems
    RSC #2 @ www.industrial-embedded.com/rsc RSC #3 @ www.industrial-embedded.com/rsc www.industrial-embedded.com VOLUME 1 • NUMBER 1 OCTOBER 20 05 COMPUTING COLUMNS TECHNOLOGY 7 Foreword Thinking 48 Modern interfaces in light of embedded computer integration A fresh start to getting things done By Andreas Geh, DIGITAL-LOGIC AG By Don Dingee 54 Embedded compute models help contain costs 8 Industrial Europe By Ernest Godsey, MEN Micro Q & A with Ulrich Gerhmann, CEO, and Norbert Hauser, 57 Product Profiles VP of Marketing, Kontron EMEA HUMAN INTERFACE By Stefan Baginski TECHNOLOGY 10 Market Pulse 80 Converging functionality in embedded industrial control IEEE 802.15.4 and ZigBee By Melissa Jones, Ultimodule By Bonnie Crutcher 84 Using software-configurable processors in biometric 98 The Final Word applications It’s all about choices By Philip Weaver, Stretch, and Fred Palma, A4 Vision By Jerry Gipper 87 Product Profiles SENSORS/CONTROL FEATURES TECHNOLOGY NETWORKING 88 Combining a hardware neural network with a powerful SPECIAL: Standards automotive MCU for powertrain applications 16 Opening gates with TCP-to-CANopen By Dr. Paul Neil, Axeon By Holger Zeltwanger, CAN in Automation APPLICATION 20 Performance, implementation, and applications of 90 Open architecture PAC technology drives undersea remotely Ethernet Powerlink operated vehicles By Frank Foerster and Bill Seitz, IXXAT By Chris Ward, C&M Group TECHNOLOGY 91 Product Profiles 12 Ultra-wideband communication for low-power wireless STORAGE body area networks TECHNOLOGY By Bart Van Poucke
    [Show full text]
  • CAN.LIN.MOST.Flexray Manual
    CANoe DENoe .CAN.LIN.MOST.FlexRay Manual Version 4.1 Vector Informatik GmbH, Ingersheimer Str. 24, D-70499 Stuttgart Tel. +49 711 80670-0, Fax +49 711 80670 111 Email [email protected], Internet http://www.vector-informatik.de III Subsidiaries France Sweden Vector France SAS VecScan AB 168, Boulevard Camélinat Fabriksgatan 7 F-92240 Malakoff S-41250 Göteborg Tel.: +33 1 4231 4000 Tel.: +46 031 79901 35 Fax: +33 1 4231 4009 Fax: +46 031 79903 05 http://www.vector-france.com http://www.vecscan.com/ Japan USA Vector Japan Co., Ltd. Vector CANtech, Inc. Nishikawa Bldg. 2F Suite 550 3-3-9 Nihonbashi, Chuo-ku 39500 Orchard Hill Place J-103-0027 Tokyo USA-Novi, Mi 48375 Tel.: +81 3 3516 7850 Tel.: +1 248 449 9290 Fax: +81 3 3516 7855 Fax: +1 248 449 9704 http://www.vector-japan.co.jp http://www.vector-cantech.com For Distributor Addresses please have a look on our website: www.vector-informatik.com © Vector Informatik GmbH CANoe/DENoe Manual Version 4.1.1 IV International Quality Standard Certificate The Quality Management of Vector Informatik GmbH is being certified throughout since 1998-08-19: • 2001-11-27 according to DIN EN ISO 9001:2000-12 Certificate number: 70 100 1498 • 1998-08-19 according to DIN EN ISO 9001:1994-08 Certificate number: 70 100 F 1498 TMS Typographic Conventions Identifies important notes Note: • Identifies enumerations (bullet items) Î '1.0 Introduction' Identifies references to further chapters of this manual [OK] Notation for buttons in dialogs <TAB> Notation for keys on the computer keyboard <Strg>+<Z> Notation for keys of the computer keyboard which should be pressed simultaneously Add… Notation for menu, command and dialog names File│File open… on message 0x100 Notation for MS-DOS syntax or program code © Vector Informatik GmbH CANoe/DENoe Manual Version 4.1.1 V Notes on the new naming convention CANoe CANalyzer DENoe DENalyzer The multi-bus functionality and die modular configuration concept of the program variants require a new naming convention of several Vector products.
    [Show full text]
  • Contrôle De La Température D'un Autoclave Par Un Microcontrôleur PIC 16F877
    اﻟﺠﻤﮭﻮرﯾﺔ اﻟﺠﺰاﺋﺮﯾﺔ اﻟﺪﯾﻤﻘﺮاطﯿـﺔ اﻟﺸﻌﺒﯿــﺔ République Algérienne Démocratique et Populaire وزارة اﻟﺘـﻌﻠﯿــﻢ اﻟﻌﺎﻟـﻲ واﻟﺒﺤــﺚ اﻟﻌﻠﻤــــﻲ Ministère de l’Enseignement Supérieur et de la Recherche Scientifique اﻟﻤﺮﻛﺰ اﻟﺠﺎﻣﻌﻲ ﺑﻠﺤﺎج ﺑﻮﺷﻌﯿﺐ ﻟﻌﯿﻦ ﺗﻤﻮﺷﻨﺖ Centre Universitaire Belhadj Bouchaib d’Ain-Témouchent Institut de Technologie Département de Génie Electrique Projet de Fin d’Etudes Pour l’obtention du diplôme de Master en : Domaine : SCIENCE ET TECHNOLOGIE Filière : GENIE ELECTRIQUE Spécialité : ELECTRONIQUE BIOMEDICALE Thème Contrôle de la température d’un autoclave par un microcontrôleur PIC 16F877 Présenté Par : 1) BOUARFA Djalila 2) BOUCHAALA Fadéla Devant le jury composé de : Dr BENYAHIA Karima M.C.A C.U.B.B (Ain Témouchent) Présidente Dr BENCHERIF Kaddour M.C.B C.U.B.B (Ain Témouchent) Encadrant Mr. BENGANA Abdelfatih M .A.A C.U.B.B (Ain Témouchent) Examinateur Année universitaire 2016/2017 Remerciements Les paroles peuvent être parfois insuffisantes parce qu’elles ne peuvent traduire nos estimables reconnaissances envers toute personne qui nous a exprimé son soutien, son aide, son encouragement et sa collaboration pour arriver à fin de ce modeste travail. On tient à remercier tout d’abord notre Dieu qui nous a donné le courage et la volonté et qui nous a aidé et montré le chemin du savoir. Nos plus sincères remerciement à notre encadrant Dr BENCHERIF Kaddour pour sa patience, sa disponibilité, ses efforts, ses précieux conseils qui nous ont été très utiles et ses critiques objectives sur la démarche de notre travail. Permettez nous Monsieur de vous exprimer notre reconnaissance et notre respect. Nous adressons aussi toute notre gratitude et respect envers la présidente du jury Dr.BENYAHIA Karima et l’examinateur Mr.
    [Show full text]