Author Manuscript Published OnlineFirst on September 26, 2017; DOI: 10.1158/0008-5472.CAN-17-1099 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Modeling cytostatic and cytotoxic responses to new treatment regimens for ovarian cancer Francesca Falcetta1, Francesca Bizzaro2, Elisa D’Agostini2, Maria Rosa Bani2, Raffaella Giavazzi2* and Paolo Ubezio1* 1 Biophysics Unit, Laboratory of Anticancer Pharmacology and 2 Laboratory of Biology and Treatment of Metastasis, Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy. * These authors share last authorship Running title: Decoding tumor growth with different treatment schemes Keywords: cell proliferation, paclitaxel, cisplatin, bevacizumab, drug scheduling, mathematical modeling Financial support: This study was supported by grants from the Italian Association for Cancer Research (AIRC IG2016 n. 18853) and by Nerina and Mario Mattioli Foundation Correspondence to: Dr. Paolo Ubezio Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milano, Italy Phone:+39-02-39014438; Fax:+39-02-3546277 E-mail:
[email protected] 1 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 26, 2017; DOI: 10.1158/0008-5472.CAN-17-1099 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT The margin for optimizing polychemotherapy is wide, but a quantitative comparison of current and new protocols is rare even in preclinical settings. In silico reconstruction of the proliferation process and the main perturbations induced by treatment provides insight into the complexity of drug response and grounds for a more objective rationale to treatment schemes.