November 2014 Society for Growing Australian Plants, Cairns Branch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Is Direct Seeding a Biologically Viable Strategy for Restoring Forest Ecosystems? Evidences from a Meta–Analysis
IS DIRECT SEEDING A BIOLOGICALLY VIABLE STRATEGY FOR RESTORING FOREST ECOSYSTEMS? EVIDENCES FROM A META–ANALYSIS 1* 2 2 Eliane Ceccon , Edgar J. González , Carlos Martorell 1 * Correspondence author: Centro Regional de Investigaciones Multidisciplinarias - Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Circuito 2, 62210, Col. Chamilpa, Cuernavaca, Morelos, Ciudad Universitaria de la UAEM, México. [email protected] 2 Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N Delegación Coyoacán, C.P. 04510, Ciudad Universitaria, D.F. México. [email protected], [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ldr.2421 This article is protected by copyright. All rights reserved. Summary Ecological restoration has become an important technique for mitigating the human impacts on natural vegetation. Planting seedlings is the most common approach to regain lost forest cover. However, these activities require a large economic investment. Direct-seeding is considered a cheaper and easier alternative technique, in which tree seeds are introduced directly on the site rather than transplanting seedlings from nurseries. To evaluate the effectiveness of direct seeding, we conducted a comprehensive search of the literature using ―restoration‖, ―direct seeding‖ and ―sowing‖ as keywords, and we performed a meta-analysis using 30 papers and 89 species. We used two different measures of restoration success: seed germination probability and success probability (the chance that a seed germinates and survives until the end of the experiment). -
Brooklyn, Cloudland, Melsonby (Gaarraay)
BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge. -
Acacia Fimbriata Dwarf Crimson Blush 8 Eye on It During the Conference, Please Let Me Know
Australian Native Plants Society (Australia) Inc. ACACIA STUDY GROUP NEWSLETTER Group Leader and Newsletter Editor Seed Bank Curator Bill Aitchison Victoria Tanner 13 Conos Court, Donvale, Vic 3111 Phone (03) 98723583 Email: [email protected] No. 129 June 2015 ISSN 1035-4638 Contents Page From The Leader Dear Members From the Leader 1 It is now only a few months until the ANPSA Biennial Welcome 2 Conference being held in Canberra from 15-20 November. From Members and Readers 2 This is a great opportunity to catch up with some other Some Notes From Yallaroo 3 members of our Study Group, and of course to take part in Wattles With Minni Ritchi Bark 5 the great program put together by the organisers. Introduction of Australian Acacias Information relating to the Conference and details regarding to South America 6 registration are available on the Conference website Max’s Interesting Wattles 7 http://anpsa.org.au/conference2015. Our Study Group will An Acacia dealbata question from have a display at the Conference. If any Study Group Sweden 7 member who will be at the Conference could help with the Pre-treatment of Acacia Seeds 8 display, either in setting it up, or just in helping to keep an Acacia fimbriata dwarf Crimson Blush 8 eye on it during the Conference, please let me know. Books 9 Seed Bank 9 I am sure that many of our members will be aware of the Study Group Membership 10 Wattle Day Association, and the great work that it does in promoting National Wattle Day each year on 1 September. -
Download All Notifications to a Spreadsheet for Analysis
Kent Academic Repository Full text document (pdf) Citation for published version Hinsley, Amy Elizabeth (2016) Characterising the structure and function of international wildlife trade networks in the age of online communication. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/54427/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Characterising the structure and function of international wildlife trade networks in the age of online communication Amy Elizabeth Hinsley Durrell Institute of Conservation and Ecology School of Anthropology and Conservation University of Kent A thesis submitted for the degree of Doctor of Philosophy in Biodiversity Management March 2016 “You can get off alcohol, drugs, women, food and cars but once you're hooked on orchids you're finished." Joe Kunisch, professional orchid grower, (quoted in Hansen. -
Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert -
Table of Contents Below) with Family Name Provided
1 Australian Plants Society Plant Table Profiles – Sutherland Group (updated August 2021) Below is a progressive list of all cultivated plants from members’ gardens and Joseph Banks Native Plants Reserve that have made an appearance on the Plant Table at Sutherland Group meetings. Links to websites are provided for the plants so that further research can be done. Plants are grouped in the categories of: Trees and large shrubs (woody plants generally taller than 4 m) Medium to small shrubs (woody plants from 0.1 to 4 m) Ground covers or ground-dwelling (Grasses, orchids, herbaceous and soft-wooded plants, ferns etc), as well as epiphytes (eg: Platycerium) Vines and scramblers Plants are in alphabetical order by botanic names within plants categories (see table of contents below) with family name provided. Common names are included where there is a known common name for the plant: Table of Contents Trees and Large shrubs........................................................................................................................... 2 Medium to small shrubs ...................................................................................................................... 23 Groundcovers and other ground‐dwelling plants as well as epiphytes. ............................................ 64 Vines and Scramblers ........................................................................................................................... 86 Sutherland Group http://sutherland.austplants.com.au 2 Trees and Large shrubs Acacia decurrens -
Vascular Epiphytic Medicinal Plants As Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities
biomolecules Review Vascular Epiphytic Medicinal Plants as Sources of Therapeutic Agents: Their Ethnopharmacological Uses, Chemical Composition, and Biological Activities Ari Satia Nugraha 1,* , Bawon Triatmoko 1 , Phurpa Wangchuk 2 and Paul A. Keller 3,* 1 Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, University of Jember, Jember, Jawa Timur 68121, Indonesia; [email protected] 2 Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia; [email protected] 3 School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, and Illawarra Health & Medical Research Institute, Wollongong, NSW 2522 Australia * Correspondence: [email protected] (A.S.N.); [email protected] (P.A.K.); Tel.: +62-3-3132-4736 (A.S.N.); +61-2-4221-4692 (P.A.K.) Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration. -
TELOPEA Publication Date: 27 September 1991 Til
Volume 4(3): 497–507 TELOPEA Publication Date: 27 September 1991 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19914946 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) 497 Alloxylon (Proteaceae), a new genus from New Guinea and eastern Australia Peter H. Weston and Michael D. Crisp Abstract Weston, Peter H.I, and Crisp, Michael D.2 (1 National Herbarium of New South Wales, Royal Botanic Gardens, Sydney NSW Australia 2000; 2 Australian National Botanic Gardens, GPO Box 1777, Canberra ACT Australia 2601; present address: Division of Botany and Zoology, Australian National University, GPO Box 4, Canberra ACT 2601) 1991. Alloxylon (Proteaceae), a new genus from New Guinea and eastern Australia. Telopea 4(3): 497-507. Oreocallis sens. lat. consists of two distinct clades, one in South America, the other in Australasia, that together are likely to be paraphylet ic. Newly sampled characters strongly support the monophyly of the Australasian group. We describe the new genus Alloxylon to accommodate the Australasian species of Oreocallis sens. lat. and revise its species. Alloxylon fIammeum is described as new and new combinations are made for A. brachycarpum, A. wickhamii and A. pinnatum. Introduction Cladistic analyses of the subtribe Embothriinae of the family Proteaceae (Weston & Crisp 1987, in prep.) show the genus Oreocallis R. Br. sens. lat. to comprise two branches of an unresolved trichotomy. The third branch is the genus Telopea, a well corroborated clade of five species. The sister group to this trichotomy is Embothrium, the only other genus in the Embothriinae. -
MOUNT AMOS South Pacific Ocean
Refer to this map as: Wet Tropics Bioregion MOUNT AMOS 1:50 000 SERIES WTMAveg Vegetation Survey QUEENSLAND SHEET 7966-1 EDITION 1 3 13 14 15 16 17 18 19 20 21145°20' 22 23 24 25 26 27 28 29 330 145°25' 31 32 33 34 35 36 37 38 39 145°30' MOUNT COOK NATIONAL PARK 15°30' 15°30' 43 85 Dawson Reef 85 62 84 56 84 South 83 An nan R 83 54a ive 70e r 42a 70a 70e 54a 54a Osterland Reef 39a 54a 55a 54a 55a 64a 82 54a 54a Cowlishaw Reef 54a 55a 64a 39a 82 70a 70a 70e 54a 70a 70a 70e Esk 70e 70a 70a 59a 81 29b 3a 70e 26a 70a 39a 81 54a 135 68d 70e Mount McIntosh 26a 70a 70e Draper Patch 29b 29b 64a 55a 70e 70e 39a 29b 26a 82 54a 39a 68d 80 21a Grave Point 70e 70e 33a 54a 59a 39a 25c 54a 8280 ANNAN RIVER 68d 54a 68d59b 55a 21a 33a 64a Walker Bay 43 70e 54a R 29b 39a 26a 54a i 47e 59a v 59a 68d e 48a 39a 77 Pacific 70e r 39a 29b 26a 50a 79 59a 70a 70e 26a 68d 29b 26a 70a 26a 70e 54a 59a 79 42a 33a 26a 55a 55a 68d 42a 48a 59a 54a54a 54a 110 48a 33a 55a 68d68d 42a 47e 29b 39a 54a 68d 59a 70e 55a 39a 62a 39a 42a 191 68d 39a 29b 67c 3a 70a 62a 67c Walker Hill 68d 33a 55a 33a 33a 39a 33a 67c 59b 59b 26a 78 NATIONAL PARK 39a 50a 42a 33a 33a 62a 59a 33a 3a 33a 50a 59a 39a Walker Point 78 62a 42a 59a 48a 29b 39a 26a 68d 48a 48a 3a 33a 59a 39a 3a 57a 33a 59b 39a 33a 67c 3a 59a 67c 68d 67c 67c 59a42a 26a 59a 39a 33a 33a 67c 64a 67c 59a 33a 59b 50a 76 57a 48a 67c 26a 77 33a 62a 42a 38 67c 67c 33a 39a 48a 67c 33a 67c 50a 39a 68d 62a 39a 67c 57a 77 61c 33a 29b 48a 67c 57 33a 33a 67c 29b 68d 42a 67c 67c 67c 42a 33a 39a 67c 67c 15°35' 59a 42a 64a 15°35' 50a 48a 33a -
Coarse Woody Debris in a Tropical Rainforest in North Queensland, Australia: Relationships with Stand Structure and Disturbance Nadine Rea SIT Study Abroad
SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Spring 2012 Coarse Woody Debris in a Tropical Rainforest in North Queensland, Australia: Relationships with Stand Structure and Disturbance Nadine Rea SIT Study Abroad Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Ecology and Evolutionary Biology Commons, Environmental Health and Protection Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Rea, Nadine, "Coarse Woody Debris in a Tropical Rainforest in North Queensland, Australia: Relationships with Stand Structure and Disturbance" (2012). Independent Study Project (ISP) Collection. 1268. https://digitalcollections.sit.edu/isp_collection/1268 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. Coarse woody debris in a tropical rainforest in North Queensland, Australia: Relationships with stand structure and disturbance Nadine Rea Project Advisor: Matt Bradford, CSIRO Tropical Forest Research Centre Atherton, Queensland, Australia Academic Director: Tony CumminGs Home Institution: Hampshire ColleGe Submitted in partial fulfillment of the requirements for Australia: Rainforest, Reef, and Cultural EcoloGy, SIT Study Abroad, SprinG 2012 2 ABSTRACT Coarse woody debris (CWD) refers to the woody material on the forest floor, including fallen stems, large branches, coarse roots, wood pieces, and standing dead trees (snags) (Harmon et al. 1986). CWD is an essential but often overlooked aspect of ecosystems. -
Myrtle Rust Reviewed the Impacts of the Invasive Plant Pathogen Austropuccinia Psidii on the Australian Environment R
Myrtle Rust reviewed The impacts of the invasive plant pathogen Austropuccinia psidii on the Australian environment R. O. Makinson 2018 DRAFT CRCPLANTbiosecurity CRCPLANTbiosecurity © Plant Biosecurity Cooperative Research Centre, 2018 ‘Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment’ is licenced by the Plant Biosecurity Cooperative Research Centre for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This Review provides background for the public consultation document ‘Myrtle Rust in Australia – a draft Action Plan’ available at www.apbsf.org.au Author contact details R.O. Makinson1,2 [email protected] 1Bob Makinson Consulting ABN 67 656 298 911 2The Australian Network for Plant Conservation Inc. Cite this publication as: Makinson RO (2018) Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment. Plant Biosecurity Cooperative Research Centre, Canberra. Front cover: Top: Spotted Gum (Corymbia maculata) infected with Myrtle Rust in glasshouse screening program, Geoff Pegg. Bottom: Melaleuca quinquenervia infected with Myrtle Rust, north-east NSW, Peter Entwistle This project was jointly funded through the Plant Biosecurity Cooperative Research Centre and the Australian Government’s National Environmental Science Program. The Plant Biosecurity CRC is established and supported under the Australian Government Cooperative Research Centres Program. EXECUTIVE SUMMARY This review of the environmental impacts of Myrtle Rust in Australia is accompanied by an adjunct document, Myrtle Rust in Australia – a draft Action Plan. The Action Plan was developed in 2018 in consultation with experts, stakeholders and the public. The intent of the draft Action Plan is to provide a guiding framework for a specifically environmental dimension to Australia’s response to Myrtle Rust – that is, the conservation of native biodiversity at risk. -
Australian Tropical Rainforest Plants - Online Edition
Australian Tropical Rainforest Plants - Online edition Family Profile Elaeocarpaceae Family Description A family of 12 genera and about 635 species, widespread in tropical and warm temperate areas but not present in Africa; nine genera occur naturally in Australia. Genera Aceratium - A genus of about 20 species in Malesia, Australia and Vanuatu; five species occur naturally in Australia. Balgooy (1963, 1976). Elaeocarpus - A genus of about 350 species, widespread in tropical and warm temperate areas but not present in Africa; 33 species occur naturally in Australia. Coode (1984); Coode (2004); Cooper & Cooper (2004); Harden et al. (2014); PlantNET http://plantnet.rbgsyd.nsw.gov.au [26/7/2016]. Peripentadenia - A genus of two species endemic to Australia. Coode (1987); Hyland & Coode (1982); Smith (1957). Sloanea - A genus of about 150 species in Asia, Malesia, Australia, New Caledonia and tropical America; four species occur naturally in Australia. Coode (1983), Coode (2004). References Balgooy, M.M.J. van (1963). Review of the Australian species of Aceratium. Blumea 12:71-77. Balgooy, M.M.J. van (1976). A note on Aceratium ferrugineum C.T. White (Elaeocarpaceae). Blumea 23:49-50. Coode, M.J.E. (1981). Elaeocarpaceae. In Henty, E.E. (Ed.) 'Handbooks of the flora of Papua New Guinea.' Vol. 2, (Melbourne University Press: Melbourne.), pp. 38-185. Coode, M.J.E. (1983). A conspectus of Sloanea (Elaeocarpaceae) in the Old World. Kew Bulletin 38:347-427. Coode, M.J.E. (1984). Elaeocarpus in Australia and New Zealand. Kew Bulletin 39:509-586. Coode, M.J.E. (1987). Crinodendron, Dubozetia and Peripentadenia, closely related in Elaeocarpaceae.